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Abstract

Position-fixing in both the land and marine environment involves two equally
important operations: the mathematical combination of the observed data to.
produce estimates of position, and the study of the errors in the measurements
and their propagation through the computational procedure in order to yield
the guality of the estimated positions. The usefulness of the results of both
operations is largely dependent on the sophistication of the processing

methods employed and the current trend is to use increasingly more complicated

mathematical procedures.

This Working Paper is concerned with a family of techniques, known generally
as least squares, which is now almost universally used for modern position-
fixing. The object is to provide a rigorous mathematical background to least
squares methods and, at the same time, to identify a number of current, and
possible future, applications in the field of position-fixing. Readers are
assumed to be conversant with matrix algebra but no prior knowledge of

statistics or least squares, or of the general position-fixing methodology, is

assumed.
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Notation

The notation below refers to the general usage of symbols throughout the

e N o]
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Working Paper. Where a symbol has only a special localised meaning it is
defined in the text and not included in this list. ?
b vector of absolute terms in a linearised mathematical model @;
e vector of true errors; eastings in 2.5.2 1;
e, null vector except for the ith element, which is unity Ii
p: least squares estimate of the vector of correlatives H
4 vector of observed values E
Z true values of the vector of observed gquantities i
ﬁ least sgquares estimate of Z f
m number of parameters y
n number of observations; northings in 2.5.2 I
r number of equations in a pos3tion-fixing mathematical model ‘
s scale error or sample standard error (section 5) &
v true values of the vector of residuals %:
v least sguares estimate of v )
X true values of the vector of parameters; mean value (section 5) i
x° approximate values of X Ei
X true values of the corrections to x°, x = x=x il
K least squares estimate of x h‘
i
A,C design matrices {=
Cy covariance matrix of the vector of variates y £ 
E eastings i
E(y) expectation of y |
G Kalman filter gain matrix g ;
Hg null hypothesis ' E;‘
H alternative hypothesis :
I unit matrix '!*t
M transition matrix (section 8) f
N northings or ATMA il
P(a<ys=b) probability of y being in the range a to b, sometimes written I
P(a,b) I
i
o probability of type 1 error (section 5) }”‘

B probability of type 2 error (section 5)




-
O
] 5
" vector of mean values é
O |
) degrees of freedom <
o standard error; standard error of population (section 5) §
o standard error of Yy ;
Ya
o covariance of y, and y
yly2 1 2
2 variance
02 unit variance

The following general points apply to the use of matrix algebra.

(i) Upper and lower case letters (usually Roman) are used for matrices and

vectors respectively, e.qg. Y is a matrix and y is a vector.

(ii) Individual elements are denoted by subscripts, e.g. Y., and y; are

ij
elements of Y and y respectively.
(iii) YT, Y_.1 and Tr(Y) are the transpose, inverse and trace of Y respectively.
The inverse always refers to the Cayley inverse, i.e. AA-l = 1.

B
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pposition-fixing is concerned with the determination of the coordinates of
points on (or possibly above or below) the earth!s land and sea surface. It
is an activity that is central to the geodetic sciences and one that is
required for innumerable purposes. Sometimes single points are fixed, e.g.
for navigation and in the provision of photogrammetric control, and at other
times groups of points are fixed simultaneously, as in engineering and
national control networks. It is convenient to consider position-fixing as

having the following steps:
(i) design

(ii) measurement

(iii) mathematical modelling
(iv) estimation

(v) analysis.

The design stage involves decisions upon which measurements to make; often
these will be limited by practical considerations but in principle thers is a
vast choice. Nowadays instrumentation is available to measure a multitude of
physical quantities ranging from the traditional angles and distances to
freqguency shift (e.g. satellite-Doppler), time delay (e.g. from guasars in
very long baseline interferometry) and vehicle acceleration (e.g. inertial
surveying). The object of the design stage is to select a set of measurements
that will yield results of the desired quality with the minimum cost. Once
the measurements have been made it is necessary to set up a mathematical
model relating the required coordinates and the observations. At this stage
the physics of the measurement process and the chosen reference system (and
other aspects of geodesy) are taken into account. For instance, if a plane
surface mathematical model is used, a distance observed by EDM must be
"projected" from the earth to a plane surface via models for both the

atmosphere and the reference ellipsoid.

The fourth stage is the statistical estimation of the coordinmates and this is
of crucial importance if the best possible results are to be derived from

the measurements. This point is illustrated by the fact that the massive

improvement in the guality of inertial surveying and satellite-~Doppler results

over the last ten years is entirely due to advances in the adopted processing

st T
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methods (the instrumentation has hardly changed). Also, the major errors in
many national triangulation networks, e.g. in Great Britain, have been largely
eliminated simply by reprocessing the old observations (perhaps along with a
few new ones). Fortunately, the current availability of relatively inexpensive
computers means that it is possible to apply sophisticated processing methods
to almost all position-fixing measurements. The essence of the argument here
is that since it is so expensive and time-consuming to make position-fixing

measurements, they should be given the best possible treatment.

The final stage, the analysis of the gquality of the fix, is, in a sense, the
most important. Indeed, it could be arqued that coordinates are of no value
without some measure of their quality because it would not be known whether or
not théy were suitable for their intended purpose. The quality of a position-
fix is a measure of the probability of its containing errors of a specified
size (or the size of an error that can be expected with a specified
probability). Since it is usual to class errors in surveying under three
headings - random, gross and systematic — it follows that gquality must be
measured under all three headings. In the cases of random and gross errors
the terms precision and reliability are used when assessing the quality of a

position-fix.

This working paper is concerned with the mathematical aspects of the foregoing
stages (iv) and (v), and to a limited extent stage (i). It is essentially a
presentation of a universal methodology for estimating, and analysing the
quality of, coordinates (and possibly other quantities relating to the
measuring systems and the chosen mathematical model) from any set of
measurements. It is important to emphasise at the outset that the method,
known to surveyors as least squares, is completely general. In principle it
can be applied to all position-fixing problems irrespective of the dimengions
of the problem, the number of points being fixed and the number and type of
observations. Also,it applies to problems either homogeneous or heterogeneous
with respect to the types of observations included. Emphasis throughout this
paper will be placed on theory, the main object being to provide readers with
a set of "tools" which they can use to solve their own position-fixing
problems. Some examples have been included but these are to illustrate eithet
specific detailed points in the text or the breadth of the applicability of a
particular "topl". Their simplicity should not obscure the fact that the
methodology can be applied to all position-fixing problems and in practice

many are more complicated than any of the examples given.

-7 -



As far as the position-fixing methodology is concerned, this paper is

completely self-—contained with every result being derived from first

<
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principles within the text, or, in two cases, in appendices. No prior

knowledge of statistics is assumed and all statistical terms are defined

=
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pefore they are used. Cert n statistical formulae and results, e.g. those

pertaining to the sampling distributions, are, however, not derived (although

P

references containing the most relevant proofs are given). Readers are
assumed to be proficient in matrix algebra and to be familiar with some

standard mathematical results.

To ensure the generality of the approach and the equivalence of the technigues
ar in various sections, some of the terminology may, in places, be slightly

- different to that with which most practising surveyors are familiar. For

instance, the term "adjustment" will not be found in this paper. UWe prefer
to speak of "estimating coordinates" rather than "adjusting observations".
This is partly because the work "adjustment" has no place in the language of

statistics and partly because it has always been something of a misnomer

; " since observations cannot be changed. Similarly, the work "accuracy" is
avoided as it is not well defined for position-fixing problems and the two

terms "precision" and "reliability" are preferred.

ng; The title of this paper claims that the subject matter is advanced. UWhether
| or not this is the case is, of course, a matter of opinion. Certainly much
of it, especially the statistics, is very elementary, but the word is used
because the treatment of least sguares is more advanced than that usually
presented to first degree (i.e. bachelor's) land and sea surveying students
in Great Britain (with the possible exception of those who may specialise in

photogrammetry or geodesy).

e In order to explain how the various sections of this paper fit together and

how they relate to the overall objective, a brief summary of the contents il

TH5 will now be given. Section 2 considers the general form of the position-

o fixing mathematical model and its linearisation ready for the application of
least squares. Then in section 3 the method of least sguares is introduced

and applied to the linearised general mathematical model. The precision of

1er position-fixing observations and of the results of the least squares

= computation described in section 3 are discussed in section 4, which includes
derivations of all the relevant covariance matrices. Section 5 considers
methods for the statistical testing of the results of a least sguares

computation. This is important for measuring the reliability of a position-

o B
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fix and can give useful information on the possibilities of systematic errors,
the completeness of the model used in section 2 and the correctness of the
covariance matrices assigned in section 3. Section 6 uses the statistical
terminology introduced in sections 4 and 5 to justify the least squares method

used in section 3.

Section 7 looks at methods for dividing large least sdguares problems so that
they may be handled on modern microcomputers. These methods are especially
important nowadays as many modern measuring systems produce vast amounts of
data which need to be processed simultaneously, and many applications require
large numbers of points to be fixed simultaneously. It should be emphasised
here that this paper is not concerned with computer methods as such: only
the mathematical aspects of dividing the problem are considered. Similarly,
methods for solving systems of linear equations and inverting matrices are

not considered.

A number of position-fixing problems, e.g. navigation at sea and inertial
surveying, involve parameters (especially position) which vary with time. The
general treatment of such problems belongs to the areas of mathematics knoun
as filtering, smoothing and prediction and the principles of these are
outlined in section 8, which includes a derivation and discussion of a
technique known as Kalman filtering. Section 9 is devoted to the problems of
least squares interpolation and collocation. Although these are not usually
used to determine positions directly they are included here because (a) they
belong to the same "family" of least sguares methods as those discussed in the
rest of the Working Paper and (b) they have indirect applications in position-
fixing, e.g. in the determination and interpolation of coordinate

transformation parameters.

Finally, it is proper to make it clear that the intentions of this Workihg
Paper are purely didactic and that it contains nothing new. Its contents have
been collected from a large number of sources, most of which are referenced in
the text. Some works have, however, had such a great influence on the author
that simple references are an insufficient acknowledgement of their importance
and the following statements are considered necessary. UWells and Krakiuwsky
(1971) was used extensively whilst writing sections 2 and 3 and parts of 4, 5
6 and 7. Pelzer (1979), Sunter (1966) and Gagnon (1976) were used for parts

of sections 5, 6 and 7 respectively and section 8 is largely based on

‘Krakiuwsky (1976). Section 9 owes a great deal to both Krakiwsky (1976) and

Paul A Cross- UCL
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woritz (1980).
und to be extremely useful when writing the statistical
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2. A general mathematical approach to position-fixing

Paul A Cross- UCL

2 The basic mathematical model

The basic data from which all coordinates (and perhaps other parameters) are
computed are the observations, so in all position-fixing problems it is
logical to consider them first. Hence we begin by defining 4 as a vector of
observations. 4 may contain such quantities as angles, distances, Doppler
counts, time, phase differencés, gravity, etc. In some problems we deal
with homogeneous data, for example only angles in a resection or only
distances in an offshore acoustic fix, but in general problems will be heter—
ngeneous_and include a mixture of various types of observations. The true
value of the quantities that have been observed are contained in a vector 4
where

bl m (2.1)

ar
L = £ % % (2.2)

and the vector e contains the true errors of measurement whilst the vector v
contains the true residuals. Note that, although errors and residuals are
the same but for a change of sign, in practice it is usual to work with

residuals and hence to use (2.2) rather than (2.1).

Usually it will be required to estimate a set of parameters (with true values
X) from the observations L. These parameters may well include quantities
relating to the observations (e.g. scale errors in EDM, frequency errors in
satellite-Doppler, etc.) and to the coordinate system (translation parameters,

scale factors, etc.) as well as the coordinates themselves.

There must always be a known mathematical relationship between the true
values of the observed gquantities and those of the parameters. This
relationship constitutes the basic mathematical model and is expressed as a

general vector function
F(x, £) =0 (2.3)

Note that a vector function simply means a set of r eguations



fy (x, Z) = 0O
iy (x, Z2) = 0O

" (2.4)
f‘I‘ (;! E) = 0

Throughout this paper we will deal with problems where m parameters are to be

estimated from n observations with a mathematical model containing r© eguations.

Usually the problems will be redundant, i.e. there will be more observations

than are strictly necessary to solve the problem and we will have

n =21 2 m (2.5)

With r-m being known as the redundancy or degrees of freedom.

Examples of the functions ﬁi (x, £) in (2.4) are as follous:

(a)

(b)

(c)

for an observed bearing, @, from unknown station 1 to unknown station 2

using a plane coordinates model

tana - (E, - El)/(ﬁ2 - W) =0 _ (2.6)

where E E. and N, would be part of X and @, part of Z

Nl’ 2 2

l’

for an observed distance, d, with an unknown scale correction, s, and an
unknown index correction, i, between unknown stations 1 and 2 using a

plane coordinate model

— -2 - - \2 - = .2 :
(ds + 1I)° = {(52 - El) + (N2 - Nl) }] = o (2:7)
where El’ Nl’ EZ’ Nz, s and I would be part of X and d, part of 2

for observed abscissa and ordinate (xi and yi) when estimating the

gradient (m) and intercept (c) of a "best" fitting straight line
V.- X, = & = O (2.8)

where m and € conmstitute x,and ;i and ;i are part of %

(d) for the estimation of the angles of a triangle (Ei, Q. 53) from observed

iy T e
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angles using a plane surface model

o+ @, o+ @ - 18 = 0O (2.9)

where Ei, Eé and EB are part of 4 and there are no parameters,

It is important to note the use of the overbar on all the elements of X and £
in the above four examples: the basic mathematical model applies to the true

values of the observed quantities and parameters.

Some special features of the above examples are also worth noting at this

stage.

(i) Examples (a), (b) and (c) are non-linear equations whereas (d) is linear
Note that, although it represents a straight line, (c) is mathematically

non-linear due to the product Eii.

(ii) Example (b) includes guantities other than coordinates amongst its

parameters.

(iii) Examples (a) and (b) could be rewritten in the form

f, (X)) = 2 (2.10)
and example (d) has no parameters and could be rewritten

f, (2) = 0 (2.11)
but example (c) cannot be simplified and must remain as

Fy (x, Z) = 0O (2.12)

These three classes of equations are often referred to as "observation

v
equations", "condition equations" and "combined case" respectively.

2.2 Linearisation of the model

For the practical estimation of X from (2.3) it is necessary to linearise the;
basic model (unless, of course, as in example (d) in 2.1, the model is alraaﬂg
linear). In mathematics linearisation always necessitates estimating ;
provisional (or approximate) values of the guantities involved. We already

have an approximation of £ since we know the observed values %, but we also
require provisional values of x; let these provisional values be x° and let

X be related to x° by




=]

j@

% = x° 4+ x (2,1%)

where it is now necessary to estimate the small quantities x. Hence, if we

substitute (2.13) and (2.2) in (2.3), we can write
F(X, Z) = F(x°+x, L+v) = O (2.14)

and, applying the Taylor series expansion to first differentials, we obtain

- - D dF dF
Fix, £) = F(x 4, L) +=x+=v = 0O P
(x, £) (x7, £) o % (2.15)
< " OF F ; 0
where the partlalderluatlua35§' and gf are evaluated at the points x and

L respectively. It is important to note that, despite the lack of overbars,
x and v are the trus values of the corrections to the provisional values of

the parameters and of the residuals respectively.

Now F(x°, 4) is a vector uhich contains the r values of F(X, £) computed at
the known points xD, L. Let this vector be -b, the negative sign being

introduced merely for convenience.

Hence _ -
Fl(xo’ ‘E)
fz(xoi 'e‘)
-b = . (2.16)
(r x 1) .
fr(xo, L)
1. .

Q; is a matrix of order r x m and is denoted by the letter A. The ith row
dx

will simply be the partial differentials of Fi(§, 2) with respect to

;l’ 22, i §m' Hence

— —

s W R, '

bxl bx2 bxm

bfz bfz - - L] &

b;l b?cz b§m
( A ) = . i . (2. 17)
rXm

OFf of of

T — - L] - __E‘_
b§1 b§2 b§m
-
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OF is a matrix of order r x n and is denoted by the letter C.
(o}

The ith row will simply be the partial differentials of fi(g’ %) with respect
to Z

—

£2, e’y En' Hence

1!
PR
bzl bﬁz o) :
C _|° i °£2 CEL (2.18)
(r x n) : . 3
-bjzif—r.il&
bzl bzz bzn

Matrices A and C are often referred toas design matrices and we can write
(2.15) as
Ax + Cu = b = DO (2.19)

which is the linearised version of the basic model in (2.3). It is often
referred to as the combined case as it is a combination of the following tuwo

special cases.

Zsd Special cases

2.3.1 Observation equations

As mentioned in 2.1, if each equation in the basic mathematical model only

contains one observed quantity, then (2.3) can be written as

-

F(X) -Z = O (2.20)
with © = n. Clearly, if we differentiate the ith row of (2.20) with respect
to Z, we will get zero except for EZ; = =l. Hence

bzi
 _ ¢ - _1 (2.21)
22

e O =



ct

8)

T i

P ————

s

and (2.19) becomes
Ax = b—-v = 0O

or

Ax = b + v (2.22)

which is the well known linear model for "observation egquations”.

2.3.,2 Condition equations

if F(x, Z) is formed without parameters, i.e. in terms of observations only,

(2.3) becomes
F(Z) = © _ (2.23)

with r =2 n ~ m. At first sight it may seem contradictory to state that the
problem has no parameters (m = 0) and then to write r = n = m. Actually what
is meant by m here is the number of parameters that would be used if the same

problem were to be solved using observation equations. Clearly, if there are

no parameters

D_F. =A=0 . (2.24)
dx

and (2.19) becomes

Cv-b=20

or

Cv=bh (2.25)

which is the well known model for "condition equations®.

2.4  Summary of linear models

The main features of the combined model and its two special cases can be

summarised in the following table.

- 11 =
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I
O
-
%
o
O
<
>
~ combined observation condition &
case eguations equations
mathematical model F(x, £) = O F(x) = £ F(Z) = O
no. of equations T n no=m
no., of observations n n n
no. of parameters m m -
linearised model Ax + Cv-b = D Ax = b + v Cv=~>

Interestingly, there is always a choice between the two special cases, i.e.
if the combined model does not apply the basic mathematical model can be
written down either as a set of observation equations or as a set of condition
equations. In practice observation equations are usually easier to form than
condition equations. This is because the procedure is more easily automated:
one observation will lead to one equation. Hence condition equations are
rarely used in practice although they may have some special computational

advantages, especially when hand computation is used.

This choice of model is illustrated by the following example of a level

network. Note that the linearity of the problem and its geometrical simplicil

mask the usual difficulties with condition equations. 1
The observations are Ahq
Ahoy
T
L = [Ahl Ah2 AhS Ah4 Ahs] i
POIN
Let the parameters be the heights g
of the three unknown stations Ahg

above the known point:

X = [xl x2 XZ:F
The observation eguation model F(x)
(h=r=5 m=3)

3 ¥

1 will be the five equations

fl(x, L) = + X1 - Ahl = D
fols Z) = - %, - A_h3 = B
f (%, L) = + Ky - hAh, =0
Pe(x, 3) = + Ry = Xy - 'A_hs = B

P i s



==

and the condition eqguation model F(Z) = 0 will be the two equations

(I’l=59 I‘=2)

-— _-—— — A_ _

fl(z) = Ahl + Ah2 +bh, = O
= Ah. % Ok & Bh. =

fz(z) = bh, +8h, +4nh, = D

2.5 Examples of position-fixing models

1t has been shown that, provided the functional relationship (2.3) betwsen the
parameters and observed quantities is known, equations of the type (2.18),
(2.22) or (2.25) can be derived for any position-fixing problem simply by
differentiation. It makes no difference whether the observations are linear,
angular, of freguency or of time (or any other quantity), or whether one,

two or three-dimensional coordinates systems are used; the principles are
exactly the same. To illustrate these principles three examples have been
chosen, one each of the three cases - combined, observation equations and
condition equations. Also, Appendix 3 contains numerical worked examples of

each of the three cases.

2.5.1 Example of combined case

It is usual when position-fixing using a satellite laser ranging system
continuously to track the satellite and abserve a very large number of ranges.

It would be common to select groups of ranges dl, dz, —— dr measured at

times tl’ tz, e tr and reduce them to a single distance d at a specified
time t. Such a procedure is often said to produce "normal points" on an
orbit.
RANGE
A v
r
d

\NOHMAL POINT

> TIME

et % 2t

ICE -

— - e TS e _,.§.:'-U

=t ———-‘ﬁ__,E




For this purpose it would be necessary to fit a eurve, say a quadratic of

the form

Paul A Cross- UCL

- e - e P
s £
d = xl + x2t + XS

where §1, §2 and §3 are the true values of the unknown parameters. Hence the

basic mathematical model F(X, Z) is a set of r equations

- - o 5 -2

dl - Xl - thl - thl = 0
d X Xt SE% - f
g = By = Rgly W Rgly 8

- - -5 - 2

dI.‘ - Xl - thr - Xstr = 8}

with m = 3 and n = 2r and the linearised model will be
Ax+ Cvu-b = 0O (2.19)

which must be solved for x and v. Note that in this example the vector of
observations £ can be arranged as

e -
—i 08 t '
£ ld) &) dy by Wy Y]

and the provisional values, probably determined by fitting a curve to only

three points, are
o _ [ B o B D]T
A= 1% e T

where

>_<=X+X

Then, from (2.17) and (2.18), the design matrices are

2
-1 —tl -tl
2
oF T T
A = e = a -
(r x m) bx - . .
e ~t -t .
T ]
and
= J4 =



v

w

1 (—x2 -2x3 tl) 0 0 33
(a] a]
F 0 0 1 (—x2 -2x3 tz) .
d
C T 0
OL D D D .-a s

- .

with the vector of absolute terms given by (from (2.16))

o o o, 2
dl - xl - x2 tl - x3 tl
a] 0 o, 2
b . d2 - xl “ % t2 - x3 t2
(r x 1)
o a] o, 2
dr - xl - x2 tr - x3 tr §

Consider a point P of unknown coordinates E and N being fixed by distance

d

measurements d T dr to a number of stations 1, 2, ..., T© with knouwn

l’ 2’

l! Nl! E2!
scale error s (due perhaps to the unknown velocity of propagation of the

coordinates E N2, etc. If the distances are thought to have a

measurement signal), then there are three parameters (m = 3) to be determined
and we have

- Fag =T
X = LE N SJ

-15 =
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Assuming the distances to have been "projected" to the horizontal plane, the
basic observation eguation mathematical model F(?) -2 = D0 can be written as

the set of r egquations
- 2 - 2“%_ .
[(E - El) + (N = Nl) ] /8 - d =0

[E-e) (- n,)2 /5 - 3, = 0

2 - -
R R

=]

= 2
[(E-e)?+(
If we take provisional values
2 [ED n® SUJ,T

and put
e] o 2 0 2,3
d. "= ((E7 - E))" + (N° = N.)7)

the design matrix will be given by (2.17) as

(€% - £)/(,%°)  (N® = N)/(8,%°) —d,°/(s°)°
; (€% - £,)/(a,%%)  (N° = N,)/(a,%s°) -a,°/(s°)?

(n xm)~ . . .

(E° - £.)/(e,%%) (n° = N )/(d,%°) =d,%/(s)"

and the vector of absolute terms will be given by (2.16) as

~ 1 =
(w] 0
d [~ = d;
0 o
d, /s - d,
=h - ,
{nx1) " .
0; 0
d_ /s - d_
|
|
- 18 =
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2.5.3 Condition equations example

\ 1

2 rea P

A point P is fixed from two known stations 1 and 2 (with coordinates

El, Nl and E2, N2
and the distance d. Hence the vector of observations is

respectively) by measurement of three angles @, B and Y

g = { W

If the problem were solved by the observation equations method there would be
two parameters, the easting and northing of P. Therefore m = 2 and the number

of condition equations, F(Z) = 0, is
T = A= = 2

These equations are found by inspection from the diagram and are
a+B+y-180° = O

E/siﬁa - a/sin? = 0 *
where a is the known distance between the two fixed stations.

The design matrix is given by (2.18) as

C - il 1 1 0

(r x n) ~dcotocosecee 0 acotYcosecY  coseco

and the vector of absolute terms is given by (2.16) as

L .

Paul A Cross- UCL
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a+s+-y'—1au°
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-b =
(r x 1) d/sina@ - afsiny

Note that in practice this type of problem is usually more conveniently solved
by the observation equations method because of the difficulty of automating
the procedure whereby the condition equations are selected. This difficulty
arises because it is necessary to examine the complete set of observations
simultaneously in order to extract the condition equations whereas observation
equations can be determined consecutively (each observation leads to one

observation equation).

W
b

G | -




3, _The combined least squares process

1t has been shown that all position-fixing problems can be expressed as a

system of linear equations
Ax + Cv-b = ] (Snl)

from which the residuals, v, and parameters, x, must be determined; in other

words it is required to derive expressions of the form

X

& (8, €5 B) (3.2)

v

P, (A, C, b) (3.5)
which satisfy (3.1).

Clearly once (3.2) and (3.3) have been found we will be able to consider
observation equations and condition equations as special cases by putting

C = =I and A = D respectively.

In practice there will usually be more measurements than are strictly
necessary to solve the equations and, owing to observational errors, there will
be an infinite number of possible solutions to (3.1). This point is best

seen by looking at the special case of observation equations:

Ax = b+ v (3ud)
Here it would be feasible to choose any arbitrary set of values for x, say x¥,
and solve for v¥ from

vk = Ax¥ - b (3.5)
Hence any choice of x¥ leads to a set of residuals v¥ and unless the
observations are perfect it will not be possible to "choose" the true value

of x. So, whatever computational process is adopted, it can only producg an

estimate of X.

In this paper we will use a computational process known as least squares and
we will use the notation % and U to denote the least squares estimates of x

and v respectively.

The least squares estimates are defined as those which minimise a specified

guadratic form of the residuals:
uTMu = minimum (3.6)

where, U is the inverse of C,, the covariance matrix of the observations,
i.e.

- 10 =
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The term "covariance matrix" is defined in 4.1 and the problem of assigning
values to the variances and covariances in Cg is discussed in 4.2. It is
worth noting here that the term "least squares" is used because in the special
case where all observations are uncorrelated and have the same variance, 02,

then

1
W = =1 (3'8)
02

and the gquadratic form (3.6) can be simplified to

0

S VvV = minimum
o
: R Loth® 382 ¢ eun 2) = minimum (3.9)
02 1 2 n

and the "sum of the squares of the residuals" is minimised. A more correct
description of the general case of (3.6) would be "minimum quadratic form"
but the term "least sguares" is universally used and will be retained for

this paper.

It ought to be noted here that many texts on statistics differentiate
between least squares and weighted least squares, i.e. between uTu and uTwu.
In this paper least squares always means the weighted least sgquares of

statistics texts.

This definition of least squares will now be used to derive explicit
expressions of the form (3.2) and (3.3) for X and U. Before doing so, houwever,
it is necessary to outline the basic philosophical approach underlying this,
and to mention an equally acceptable alternative. In this paper the least
squares process is defined as in (3.6) and (3.7) and then in section 6 its
application will be justified by deriuing, and then analysing, the statistical
properties of the least squares estimates. It will be seen that least sguares
estimates are, in a certain sense, the "best" estimates. An alternative
approach would be to define the statistical properties required of the adopted
estimates and then to derive expressions (3.2) and (3.3) to yield estimates
with these properties. Clearly, if this approach were adopted, and if uwe
started with the statistical properties of the least sguares estimates, we
would in fact then derive the least squares process rather than define it as
has been done in this paper. The approach adopted is not important, since

expressions (3.2) and (3.3) will result in either case.

i P -
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We ﬁqu have a straightforward problem of mathematical optimisation, i.e. to

rind expressions for x and v which make

uva = minimum (3.6)
subject to the constraints

Ax + Cv = b = D (3.10)
where A, C, b and W are all known.

To solve this problem it is usual to use one of the standard methods of
mathematical optimisation, called Lagrange}s Method of Undetermined
Multipliers. Lagrange showed that if we have a function ¢ which must be
optimised (maximised or minimised), subject to constraints Prs Py weesr P

being zero, then the solution is found by optimising a function
& = @+ PP+ PPyt PPyt ees + IR (3.11)

where Pys Pps =+ey P aTE unknowns called "undetermined multipliers". A
proof of this proposition is given in Krabs (1979, 179) and many other

mathematics texts.

For the least squares problem it is convenient to put Py = Zkl, Py = 2k2, etc.,
where kl, k2, etc. are called "correlatives". If we denote the vector of

correlatives by k, then substitution of (3.6) and (3.10) into (3.11) gives

d = uTwu 4 2kT (A% 4 Cv = b) (3.12)

which must be minimised. This is achieved by equating -the partial

derivatives of (3.12) with respect to x and v to zero. Hence

28 T
= 2A°'k = O (3.13)
5—3 = 2+’ = @ (3.14)

Notice that as soon as (3.12) has been differentiated and the resulting
expressions equated to zero the notation Q, U and & is introduced to denote
the least squares estimates of x, v and k respectively. In principle this
could be done in (3.12) but there would be a difficulty with the partial
differentiation because X, U and k are clearly related so making dU/d%,
bﬁ/b? etc. non-zero. There is no problem with (3.12) as it stands because x,

the true corrections to the approximate values, is clearly independent of v,

the true residuals of the observations.
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Hence we need to find values for % and U which simultaneously satisfy (3.10),

(3.13) and (3.14), i.e.

AR + cO -
B =
W &6 = 0

which can be rearranged into the "hypermatrix"

w ¢ ol o 0
c o Al k|l=|nb (%,15)
o A" ol % 0
or
Py = u (3.16)

which could, in principle, be solved by one of the standard linear algebra

techniques for solving simultaneous linear equations to yield
y = P u

Such a solution would, however, involve an unnecessarily large amount of work
as P is a matrix of size n + r + m. In practice it is far easier to use (3.1
to derive explicit solutions for & and 7. WEvstart by deriving general

formulae for the elimination of unknouwns from a partitioned set of eqguations.

(3.16) is partitioned as

Pir Pag] | %1 o
= (3.17) }
Por Paa| | Y2 g |
|
which can be multiplied out to give T
Play *Fis ¥ = 4 (3.18)
Poy ¥1 + Pop ¥p = U, (3.19)
(3.18) is rearranged to give
y. & B L, =Py ) (3.20)
1 S Sls '

which can be substituted into (3.19) to give

e
Py Prp (up = Pip vp) + Py vy, = 4y

or

- 22 -
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=1 = |
p plz) Y, = (u2 - PZl Pyy ul) (3.21)

p21 o |

(Pyy -

if (3.15) is partitioned as follows

wic o |[§ 0
|
e ! allk | = |B
]
]
o i A o |8 0
and (3.21) is applied we obtain
0 A clu? [CT DJ R b
- s (3.22)
P 0 % 0
(because u, = 0), which leads to
T 1
T ][n
O A b
- ; X[y 8.2 (3.23)
T I UJLQ 0
(3.23) is partitioned as indicated and (3.21) applied to give
(o - AT(-cm“lcT)'lA)Q = B - AT(-cw'lcT)‘lb
or
[ﬁT(cu‘lcT)’lg]Q = Aote’y s (3.24)

which are the normal eguations for the combined least squares problem. If

(3.24) is written in the form
A Tyl Ty=l 11 T, =1 Ti~1
% = |[A'(CW ) A AL ) b (3.25)

it can be seen that it is the explicit solution (3.2) for which we were
searching. The residuals are obtained via the correlatives. Applying-(3.20)
v

to (3.23) gives

A o U

B = ~(oi ey e - af) (3.26)
which can be substituted into (3.14) as follows

ol T

- uie'R (3.27)

<>
1l

giving

¥ = w‘lcT(cm“lcT)'l(b - A%) (3.28)
Substituting (3.25) into (3.28) yields the desired explicit expression of the
form (3.3), viz.

¢ = wlcT(owte) I - A[gT(cm"lcT)"lé]"lAT(cw‘lcT)‘l}b (3.29)

- P -
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To solve (3.24) for % involves the inversion of Cw_lCT, which is of size r,

Paul A Cross- UCL

folldmed by the solution of m simultaneous equations. The correlatives and
residuals are obtained by matrix multiplication from (3.26) and (3.27)

respectively; no further inversions or solutions are necessary.

3.1 Alternative derivation

Weightman (1982) has given the following alternative derivations for equations
(3.25) and (3.28), which have the advantages of being far shorter than the
foregoing and of not requiring recourse to correlatives and Lagrange}s

Method of Undetermined Multipliers. They do, however, involve two substitutior
(equations (3.32) and (3.33) below) that would be very difficult to find witha

prior knowledge of the equations being sought.
We begin by rewriting (3.10) as

=BV = AR =B (3.30)
Then, premultiplying and postmultiplying a matrix M, as yet unspecified, by
both sides of (3.30), yields

T T

(cv) mMcv = (Ax - b) M(Ax - h) (3.31)

Now, putting

m o= (cwich)™? (3.32)

and introducing a vector g such that
v = uicly (3.53)

we simplify the left hand side of (3.31) to
(cu)T MCv = chw"lcT (cm'lcT)'lcm'lch

= qoituwie’q

= & Wy (hessuss of (3.33)) (3.34) .
Then substituting (3.34) in (3.31) and expanding gives

vilu = xATMAX — b'MAX - x'A'Mb + b'Mb (3.35)

For least squares we need to minimise UTMU. So differentiating (3.35) whilst

remembering that M is symmetrical gives

- O =

|
|



24TMAR - ATMB - ATMb = O (3.36)

g&(UTUU)

hence

¢ (ATmAY LA mb (3.37)

and substituting (3.32) in (3.37) yields
- [ﬁT(cw'lcT)'lA - AT(cu'lsT)'lb (3.38)

which is identical to (3.25).

Now to determine the least squares estimates of the residuals we proceed as

follows. Substitute (3.33) in (3.30) to yield

e’y = A -b
& = (o ie")™ (6 - a2) (3.39)

Then substitute (3.39) in (3.33) to give
¢ = i @y e - A (3.40)

which is identical to (3.28).

B2 Special cases

The results for the combined case can now be simplified to produce explicit

expressions (3.2) and (3.3) for the special cases of observation equations

and condition equations.

Seled Observation eguations

Putting C = -I yields, from (3.24), the normal eguations

(ATwA)2 = A'ub

with solution, from (3.25),

X (ATwa)™ ATub (3.41)

from (3.26)
-U(b - AR) (3.42)

x>
]

and, from (3.28)

= O .
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¢ o AN -2 = B - & (3.43)
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The major computational part is the solution of m simultaneous equations.

B2 Condition egquations

Putting A = D yields, from (3.26), the normal equations

(™ eHk = -b
with solution
= (o)™ (3.44)
and, from (3.28), |
i = e’ (3.45)

The major computational part is the solution of (n - m) simultaneous equations,

Ge.3 Summary of formulae

The formulae for the least squares estimates of x and v for the combined

problem and its two special cases can now be summarised as follows

(i) for the parameters
combined case % = [AT(CM"lCT)—lA]_lﬂT(Cw-lCT)—lb
observation equations § = (ATMA)_IAwa
{iz) for the residuals
combined case ? = N_lCT(Cw_lCT)Hl(b - AX)
observation equations V = B =bh
v
condition equations & < v ie'te™ e e

It should be remarked that the above are the algebraic forms of the expression
and they do not necessarily indicate the best way to compute % or U for a

practical problem.

Jed Numerical checks

The accuracy of the numerical solution of the combined case of least squares
can be determined by checking the proximity of AT(cu'lcT)'lcﬁ to a null vector

A proof of this now follows.

- 26 —

4



S

From (3.28)

aTew e et = aTew ) tou e (owte") (b - A%)

ATew ey - aT(cuteT)1ag

]

0 (from (3.24)) (3.46)
For the special cases of observation equations the check is
ATwd = 0 (as sbove with C = -I) (3.47)

and for the special case of condition equations it is usual to return to the

linear model and check
cf-b =0 (3.48)

These checks ensure the correct computation and solution of the normal
equations and the correct computation of the residuals. It is important to
realise that they do not check the proper setting up and linearisation of the
basic mathematical model, i.e. they do not check the correctness of (2.3) and
(2.19).

3D Accuracy of approximate values

If the approximate values used to obtain the numerical values of the elements
of the A and C matrices are not close to the final least sguares estimates then

the equations
Ax + Cu - b = O (3.1)
will not be a true linearisation of the functional model
f(x,4) = 0 (2.3)

In such cases it is necessary to iterate the least sguares process using the
least sguares estimates from the ith computation as approximate values for
the (i + 1)th computation. The iteration is stopped when the vectors of
parameters and residuals change by insignificant amounts. In practice such a
"convergence" is usually achieved very rapidly and a complete failure to
converge only occurs when using nonsensical approximate values. Cross (198la)
includes a discussion of the convergence problem for the computation of

individual positions at sea.

This iterative process is very easy to program and is incorporated in most

modern software. In cases where it is not desirable, such as for hand

o
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computations or in the methods described in sections 7 and 8, great care

must be taken to ensure that approximate values are close to the final least

squares estimates. This is best done by deriving them from a preliminary

computation using a selection of the observed data. As a general guide

Bomford (1980) quotes that so long as coordinates are approximated such that

the resulting errors in azimuths and distances are less than 1 minute of arc

and 1 in 4000 respectively jteration should not be necessary.

- 28 —
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4.1 Some statistical definitions

4 The estimation and interpretation of covariance matrices

Paul A Cross- UCL

As explained in section 1, one of the three gualities of a position-fix that
needs to be assessed is its precision. This 1s most conveniently done by the
use of covariance matrices (sometimes called variance-covariance matrices).
Moreover it is apparent from (3.7) that it is necessary to specify the
covariance matrix of the observations, Cg! in order to determine the weight

matrix, W, needed to compute the least squares estimates of the parameters

and residuals. Hence this section deals with the specification of CE and the (
propagation of random errors through the least squares process to enable the I
computation of CQ, CG and Eﬁ’ the covariance matrices of the least squares '
estimates of the parameters, residuals and observed quantities respectively. :

Finally, methods for abstracting useful information from EQ are discussed.

In order to keep this paper as far as possible "self-contained" from a
statistical point of view, 4.1 contains some basic statistical definitions. ;
It is worth noting that these are the only definitions needed to study the !

precision of survey measurements and of least squares estimates.

(1) probability density function (pdf) i

The probability density function, ¢(yi), of a variate y; is the

function whose integral gives the probability, P(a,b), of Ys lying in

the range a to b (see Fig. 4.1), i.e. il

7 ly;)
A

b
P(a,b) = | wly;)dy; (4.1)
a

Fig. 4.1
~ 28 —




(ii)
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A probability of one is taken to mean that an event is certain to occ

[ =

so we may write
(==}

p(-==) = [oly)dy, = 1 (4.2)
— OO
When dealing with more than one variate we use the term "multivariate
pdf" to define a function whose integral gives the probability of Y1
lying in the range 8, to bl at the same time as Yo lies in the range

a, to h2, Y llez 1; tSE range a, to bg, ete., i.e.

172 3
= i i i ene 0y (y )9, (v,)9 () oen dyjdy dy s oee
1% "3

or b
P = j &(y)dy (4.3)
a
where

¥ = [yl g ]T
o & T 1 a I
i v [ B

expected value and mean

The expected value, or expectation, of a function F(yi) is the
arithmetic average of F(yi) according to the pdf of Yi» i.e.

E[f(yi)] - _I'f(yi)w(yi)dyi (4.4)

s &

The mean, ui, of a variate, Yy is the expected value of the variate

L8k, d«B.

)

¥ fy;) |

1

T
Il

@
g = Elyd = _i y;9(y; )dy; (4.5)
For a multivariate pdf the expected value is
(==}
f[rn)] = [ rmatney (4.6)

.
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(iii)

(iv)

and the mean is

-“1— -_k(ylf_ —yl—
by E(y,) Yo .
po= b = E(yz) = E Y = Efy) (4.7)
o R |« |
The following rules apply to expected values (they follow from (4.6)):
E(ky) = kE(y) for non-stochastic k (4.8)
Bly + 24 & was ) = Ey) 4+ E(z2) o+ E{E) + wis (4.9)

unbiased estimate

An estimate of y, say y¥, is said to be unbiased if its expected value

is equal to y, i.e.

if E(y) = ¥ (4.10)

covariance matrix

The covariance matrix of vy, Cy’ is defined as

7
By = E[(y - p) (y - w) ] (4.11)
YuB
Cy = E( yl - P‘l [yl - P"la y2 s }"'2! eaes 9 yn - P"n])
Yy = Py
[ Yn = pn_
or _ _
02 - - - - - c
1 Y12 |,
2
c c - L - a - c
Yo¥y Yo o, Yo¥n
C = . * . : (4.12)
y = . s
- - - 2
o g 3 A % . (o)
ynyl yny2 yn
8 |
-

Paul A Cross- UCL




Paul A Cross- UCL

where ci = E[(yi - pi)z] is called the variance of
i :
and ayiyj = E[(yi - pi) (yj - “j)] is called the covariance of yi and

The positive sguare root of the variance of yi, cy y is referred to as

the standard error (or standard deviation) of Yse *Note that the terms

standard error and standard deviation are synonymous.

The coefficient of correlation between Ys and yj, pij’ is defined as

L MY (=) o ‘ 4.13
Pij yiyj/( ' j) (4.13)

note that - 1 = pij s1.

propagation of variances and covariances

If the vector of variates z is related to the vector of variates y by

the deterministic relationship
z = Ry (4.14)

the relationship between the variances and covariances of z and y can
be derived as follows. Note that the term "deterministic" used above
simply means that the relationship between z and y does not depend on
chance (R is non-stochastic) although the elements of the vectors z and

may themselves depend on chance (z and y are stochastic).
We can write, from (4.7) and (4.8),

w, = E(z) = E(Ry) = RE(y) = R (4.15)

Hence, using (4.11)

C, = E[(z - ) (z- uZ)T]

Z

Then, from (4.14) and (4.15),

C
z

1

e[ (Ry - Ru )(Ry - Ru )]

RE[{y - )y - wy)T]RT j
= R cy R' (4.16)

(4.16) is often referred to as Gauss's propagation of error law for

linear equations.
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4.2 Covariance matrix of the observations

a—

pefore a least squares computation or analysis can take place the covariance
matrix of the observations, Bi (often called the "a priori" covariance matrig),
has to be estimated. The word "estimated" has been carefully chosen here in
order to emphasise that it is necessary for the surveyor carrying out the
computation to make a personal assessment of the variances and covariances of
the observed quantities. Although there are a number of statistical tools
that can be used to aid this assessment, and to check its correctness after
the computation of the residuals, the subjective nature of the operation can

never be completely removed.

In this section methods for estimating the variances and covariances will be

discussed. Their testing for possible subsequent alteration is discussed in

section 5.

4.2.1 Estimation of variances

4.2.1.1 Repeated measurements

It can be shown, e.g. by Cooper (1974, 25), that, if a measurement has been
repeated n times with results zl, £2, L Ln and mean mys then an unbiased

estimate of the variance of my is given by

g = uTu/Ln(n - l)] (4.17)
where
v = [u v v ]T
- 1. 2 Y U
and
Ui = Li - mz )

Hence in situations where multiple measurements of the same guantity have been
made (e.g. rounds of angles, repeated EDM distances), (4.17) can be used to
obtain variances directly. It must, however, be pointed out that use of (4.17)
(often referred to as the use of internal evidence) has a serious drawback
when, as is usually the case, simply repeating the measurement does not
involve resampling all the sources of random error. For instance, when a

direction is measured with a theodolite, the following are amongst the possible

sources of random error:

= =
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(i)  reading the scale

(ii) bisecting the mark
(iii) centering
(iv) levelling

(v) lateral refraction.

Errors due to sources (iii), (iv) and (v) above would not be reflected in
multiple rounds from the same theodolite "set-—up" so (4.17) would obviously
give too optimistic (variance too small) a measure of the precision of an
observed angle. In other words, errors due to (iii), (iv) and (v) are
systematic during the repeated measuring process. They will not usually be
systematic, however, as far as the position-fix computation is concerned

because they are, in general, random from station to station.

4.2.1.2 External comparisons

A better way to estimate the precision of a measuring process is to compare
its results with some known values (either true values or values derived from
another measuring process that is significantly more precise than the one
being used). For instance, with theodolite angle (or direction) measurements
it is known that the three angles (or differences from six directions) in a
plane triangle should sum to 180°. For a network with n triangles Bomford
(1980, 164) quotes Ferrero's formula for the variance of an observed angle,

aa?’ and observed direction, 082, as

°a2 = BAlE (4.18)
052 = aTa/6n (4.19)

where T )
A = [Al A2 — An] is a vector of triangular misclosures

Ashkenazi et al. (1972) quote an example of the application of (4.19) to the
triangular misclosures of the retriangulation of Great Britain. The result i
a figure of 0OY65 for the standard error of a direction derived from the mean
of sixteen rounds. If (4.17) is used with the same data a value of between
O"1 and 02 would be derived, illustrating the point made in 4.2.1.1 that the
study of repeated measurements will invariably lead to an underestimation of
their variances. An important corollary to this is that large numbers of

repetitions are usually of little value beyond guarding against gross errors.

- 34 —
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For instance, with the foregoing example of direction measurement the major
source of error is laterai refraction and no matter how large the theodolite
horizontal circle and how skilled the observer (so long as they are both of ilst
order geodetic standard) a standard error of OY65 is to be expected. It may
even be argued that two rounds of measurements should be sufficient (the second

merely for a check on gross errors). Note that this argument would need to be

modified if the repetitions sampled different atmospheric conditions, e.g. some
during the day, some at night, etc.

Similarly to (4.18) and (4.19), distance measuring systems are often calibrated
on a baseline and an analysis of the calibration readings can lead to a figure

for the variance of the equipment, e.g. Ashkenazi and Dodson (1977).

Even these external comparison methods have their drawbacks. For instance,

many surveying organisations specify "allowable triangular misclosures" for
their field parties and insist that any angles failing to satisfy the criteria

be reobserved. If the criteria are too strict, perfectly good angles (in the

statistical sense) may be interpreted as blunders and reobserved until, by

chance, they cause triangular misclosures to be within the set limits. Hence
it is inevitable that (4.18) and (4.19) give small values for the angular
variances even though reobservation may cause distortions. Also baseline
calibration of distance measuring instruments cannot always gauge how they

will perform over much longer distances in different atmospheric environments.

B:2:1.3 Previous performance

In situations where neither external comparisons nor repeated measurements are
possible the only way to estimate the variances of observations is to look at
evidence of the previous performance of the measuring system, such as may be
found in manufacturers! literature or in scientific papers. In fact variances
estimated in this manner are likely to be closer to the truth than those
estimated from repeated measurements, although repeated measurements may

indicate the relative variances of a number of measurements made with the same

system.

4.2.1.4 General remark

It is important to remark that when estimating the variances of individual
observations we are actually trying to determine statistics (see 5.1) of the

infinite populations of errors from which the errors in our measurements have
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been .drawn. We are not attempting to estimate the actual size of the
measurement errors. Hencé when a number of measurements have been made using
similar instrumentation and observing procedures it would be usual to assign
the same variance to all the measurements. In fact very good evidence (such
as that which may be yielded by the tests in 5.4.2) would be needed before

assigning different variances to any groups of such measurements.

To exemplify this argument consider a modern control network consisting of a
number of interlocking traverses measured using similar instrumentation,

under similar conditions, by technicians of a similar grade. It has happened
in the past that in such situations each traverse has been considered
separately and each individual measurement in that traverse assigned a variance
related in some way to that traverse's misclosure. Such a procedure is
contrary to statistical theory and very dangerous as it can lead to quite
ridiculous assigned variances (as found, for instance, by Masson-Smith et al.
(1974), when applying a similar argument to gravity loops). The fact that a
traverse closes well (perhaps perfectly) does not imply that the population
from which its measurement errors are drawn is any different from that relatin
to a traverse with a large misclosure (so long as the misclosure is not so
large as to indicate a gross error when the statistical tests in 5.4.1 are
applied). The correct procedure is to compute just one variance from the mean
of all the traverse misclosures and to use that to compute the measurement
variances. Of course the argument is different if there are good reasons to
suspect that different error populations are involved (e.q. if different

instrumentation has been used, or if different topographical conditions exist)

A similar argument applies in offshore navigation, where it has happened that
position-fixes have been assigned standard errors based on the area of the
"ecocked=hat" derived from a semi-graphic computation. Clearly what is
important is the average size of a "cocked-hat" over a short period of time
(during which the measurement process and fix geometry remain unchanged).
Unless a "cocked=hat" is large enough to indicate a blunder it should not be
interpreted as indicating a fix of a poorer quality than one with an area of

ZETO.

4.2.2 Estimation of covariances

Two approaches to the estimation of covariances are discussed.
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4.2.2.1 Simultaneous multiple measurements
bolatas

Paul A Cross- UCL

1f two sets of measurements 81y 8y eeey a_ and bl’ b2, esay bh have been
made so that a; and bi are simultaneous then it can be shown that the

covariance of their means, « and B, can be estimated from

craa = uaTvb/(n - 1) (4.20)
where
v, = [al -0 8, = O ..., . = ]T
and T
v, = [bl - B, b2 < Bl s 3 bn - B]

(4.20) is often knouwn as Pearsont's formula (after the statistician

Karl Pearson).

Fig. 4.2 i

For example, if two adjacent distances a and b in Fig. 4.2 have been measured i
by EDM over a long period of time as just described, we would expect that if ;
the ith measurement of a is too long then the ith measure of b would also be E
too long (because the main error source in EDM is usually the inability of the f
refraction model to describe the actual conditions). Hence both Vs and Vi
would be positive giving a positive product in (4.20). Similarly, if both

v

lines were measured too short L and Vi would both be negative, again giving |

a positive product. The result wguld be a positive value for co@ and the
measurements would be termed "positively correlated". Conversely, if two
adjacent angles were measured in this way, we would probably obtain a negative
value for their covariance because when one angle was too large the other

would be too small (due to lateral refraction or pointing or reading errors).

It must be pointed out that it is unusual for (4.20) to be used in practice
because such simultanecus multiple measurements are rarely made. PMoreover
(4.20) may not always accurately reflect the degree of correlation. For

instance, in the foregoing distance example, if the EDM had a frequency error
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additional correlation would exist but would not be taken into account by

Pearson'!s formula because all distances would be in error by the same

proportional amount.

4.,2.2.2 _Error propagation studies

In some situations the guantities used to form the vector Z in the basic

mathematical model (2.3) for the position-fix are not the quantities that have

been directly (and perhaps independently) observed. In such cases the

covariances (and variances) of the derived quantities can be determined by

means of error propagation studies using (4.16).

Fig. 4.3
For instance, if directions dl, d2 and d3 in Fig. 4.3 have been independently
measured (covariances equal to zero) with variances °1 3 022 and 032, and if

the mathematical model has been formed in terms of the derived angles % and

and @, and their covariance can be derived as follous

s the variances of = 2
o -1 i 3 0 dl
- = Ad (4.21)
az 0 -1 1 d2
d3
then, using (4.18),
T
c, = AC A (4.22)
or _ _ s
2 [ 2 2 2
- - o, + 0o, -,
1 12
2 2 2 2
< c - c + ©
e @, 2 2 3
L - L =




Another example of the use of this procedure is when combining coordinates

derived from satellite-Doppler with other measurements. The Doppler

coordinates would themselves have come from a least sguares computation and:-
would bring with them a full covariance matrix as in 4.3.1 even though the

measured Doppler counts may have been considered uncorrelated.

This particular procedure can be very useful but it must be remembered that it

does not remove the need to consider the correlation of the directly ocbserved

guantities.

4.2.3  Diagonal covariance matrices

It must be remarked here that it is extremely rare to use a full covariance

matrix in practice. It is usually so difficult to estimate covariances that

they are ignored even though they are known to exist. In such cases C£

becomes a diagonal matrix and its inversion to obtain W is trivial. If
512, 522, T Unz are the variances of the n observations we have
-'5—2 i i u 1
' o2 ! w
2 2
W = . = . (4423)
- ._2 .
=4 w
L n_| L n|

where Wiy Usy are referred to as the weights of the observations.

It is from this special case that we obtain the well knouwn relationship:

(4.24)

"
> "n

weight = reciprocal of standard error squared

It must be emphasised that the term "weight of an observation" only has -

meaning when observations are uncorrelated. If correlation exists and Cz has

off-diagonal elements, the term "weight matrix of a set of observations" must

has only a few off-diagonal elements W will be a full

be used. Even if Cz

matrix (i.e. without zero terms).

4.,2.4 Estimation from least sguares residuals

After a least squares computation (with an estimated CL) has taken place it is
possible to estimate the precision of the measurements by examining the

residuals (the amounts by which the observed values have been "altered" by the

= B o
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computation process). Obviously high precision (low standard error)

observations will have small residuals and vice versa.

It is usual, after computing the least squares residuals from (3.29), (3.43)

or (3.45), to compute a quantity 502, which is known as the unit variance, fro
~
o ? = wi/(n - m) (4.25)

(Note that GU is often called the standard error of an observation of unit

weight.)

It is shown in Appendix 1 that
2
E(aD ¥} = § (4.26)

Now, if 602 is significantly different from unity (see 5.4.2.2 for a
statistical test to determine whether or not this is the case), and if there
are no gross errors in the measurements (see 5.4.1), it can be concluded that
the variances and covariances were, on average, underestimated by a factor of
l/bD% The reasoning for this conclusion is simple: if we multiply Eg by 002
we will have a new weight matrix WY, where

-1

2 (4.27)

1
e e
wr = > C
[}

0
and if we were to recompute the residuals U based on w3 they would not change
(this can be simply verified by multiplying W in (3.29), (3.43) and (3.45) by
any scalar), so the new 502 would be less than the old one by a factor of UD%
i.e, it would be unity. Hence multiplying by 002 will "correct" the estimated

variances and covariances of the observations.

c, (corrected) = 002 c, (estimated) (4.28)

It should be noted that in cases where (n - m), the number of degrees of
freedom, is small, e.g. in an individual offshore position-fix, Goz computed
from one fix is of little value (this is evident from the statistical test
in 5.4.2.2). 1If the measurement is repeated a large number of times (e.g.
on a moving ship or stationary oil rig), however, the mean value of 002 can
be used to correct the original estimate of the measurement variance. This
procedure is then essentially equivalent to 4.2.1.1, where variances are

computed using repeated measurements of the same quantity.

It is important to realise that the proximity of 002 to unity can only give
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us fhe factor by which the a priori covariance matrix was gn _average incorrect.
Under certain circumstances, however, it may be known, from testing external

to the least sguares computation, that some of the elements of C£ are correct
and then we can deduce the average errors in the other parts of Cg' Typically
we may be mixing angle and distance measurements and know the variances of the
angles from, say, Ferrero's formulae (see 4.2,1.2), and we may be able to use
cDZ to help estimate the variances of the distances. Details of a practical

application of this procedure are given in Ashkenazi et al. (1972).

4:2:5 Importance of weight matrices

After discussion of methods of estimating EE’ it is clearly relevant to
consider how important it is to estimate Cz correctly and to investigate the
effect on the residuals and parameters of using an incorrect Cg‘ Certainly
if the whole weight matrix is wrong by a constant factor (such as l/boz) Jik
will not matter; for example, for the parameters in the combined case (3.25)

gives
¢ - et ta R cuic) s (3.25)

If W is multiplied by a scalar, say p, it is obvious that % will not change as
p will cancel out. UWhat is more important in this case is that the "relative"
weighting between the observations should be correct and this is most difficult
to achieve when dealing with heterogeneous data (such as mixtures of angles,
distances, Doppler fixes, etc.). It is not possible to give general guidelines
for the necessary accuracy needed in the estimation of CZ, so it is best to
test the sensitivity of any particular problem by computing it with different
estimates of C£ and analysing the differences in the results. Cross (1972)
discusses the problem for large mixed triangulation networks and it has been
generally found that parameters and residuals are not very sensitive to the

C£ employed. When dealing with uncorrelated homogeneous da;a it is usually
sufficient to assume that all variances are the same, say ¢, and Dg becomes

: 2
a scalar matrix, ¢ I,

The argument is considerably different when assessing the quality of a
position-fix by means of analysing the covariance matrices of the residuals
and parameters. By looking ahead, say to equations (4.67) and (4.68), it can
be seen that if Cz is incorrectly estimated by a factor p then the estimate
of the guality of the fix will be wrong by the same factor. Hence, although

the overall size of CL is not important for estimating the parameters and

s W e
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residuals themselves, it is critical for the estimation of their quality.
, 2 o ;
This is why the statistic UU (discussed in 4.2.4) is of such special

importance in least squares computations.

4.3 A posteriori covariance matrices

It is usual in surveying and geodesy to refer to the covariance matrices of
quantities derived from a least sguares process as a posteriori covariance
matrices. ‘This is to contrast them with the covariance matrix of the
observations which is called, as in 4.2, the a priori covariance matrix.
Three a posteriori covariance matrices, those of the parameters, residuals
and estimated observed quantities, are of especial interest and expressicns
for them will be derived in this section. The approach will be to consider,
for all three matrices, the combined case and then to make the appropriate
substitutions (given in 2.3) to obtain the expressions for observation and
condition equations. It is relevant to mention at the outset that the terms
a priori and a posteriori are not being used here with their strict classical
meanings. Cooper (1981) discusses the matter in detail but, as pointed out
by Cross (1982), the above meanings of the words are well understood in
surveying and geodesy and there would be considerable difficulties and

confusion if alternative meanings were adopted.

Before considering the covariance matrices of the parameters, residuals and
estimated observed guantities, it is necessary to derive an expression for

Cb,
mathematical model. Rewriting (2.19) we have

the covariance matrix of the absolute term in the combined linearised

Ax + Cv-b = O (2.19)
where

b = -F(x°, 4) (4.29)

I = =% (4.30)

C = OF/d4 (4.31)

A = bF/aX (4~32)

Substituting (4.30) in (4.29) gives
(n] -
b = -F(x,; &= u) (4.33)

= #D =



and expanding to the first differential using Taylor's theorem leads to

b = —I:F(XD, Z) -— "%% v

_ 0 3 oF
= =F(x , Z) + i

Substituting (4.31) in (4.35) gives

b o= =Filx"y Z) + Cu

(4.34)

(4.35)

(4.36)

Applying the propagation of error law, (4.16), to (4.36) and remembering that

o} 4 .
F(x, 2) is an errorless constant gives

T
Cb = B CUC
but from (4.30) we have C, = C;» giving
i =1_T
Eb — = C£ C = CW "

4.3.1  Covariance matrix of the parameters

The parameters are given by (3.25) as

2

Defining D as

b = ie'

and substitutuing (4.39) in (3.25) gives
? = {(ATD’lA)'lATD“l}b

Applying (4.16) gives

Cp = {(ATD'la)'lATD‘l} C, {(ATD'l

We note that, from (4.38) and (4.39),

and so (4.41) becomes

{[AT(cm‘lcT)'lA]'lAT(cw‘lcT

)b

A)_lAT

Cy = (aTo~1ay1aTotop ta(a"o Ayt

- 43 -

D-l}T

(4.37)

(4.38)

(3.25)

(4.39)

(4.40)

(4.41)

(4.42)
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which simplifies to
g A [

Ch = (AD 1A) -

X
i.e., from (4.39),

= -

Cy = [AT(CM e ) lA] & (4.43)

Notice that C§ is merely the inverse of the left hand side of the normal

equations (3.24).

4.3.2 Covariance matrix of the residuals

The covariance matrix of the residuals is derived via the covariance matrix

for the correlatives. Rewriting (3.26) using (4.39) gives

~

R = -0 b - A) (4.44)

Substituting (4.40) and rearranging leads to

£ « =%« A(ATD'lA)“lATD'l)b (4.45)

Applying (4.16) and (4.42) gives

Ca = 0'1[1 - A(ATD“lA)'lATD'l] D [1 " D‘la(ATD"lA)“lnT]D'l

D'l[o - 2A(ATD"1A)'1AT + A(ATD_lA)_lATD_lA(ATD_lA)_lﬂT] p~t
which simplifies to

cp = D‘l[l = A(ATD—IA)_lATD_l] (4.46)
Now rewriting (3.27)

¢ = - Wik (3.27)
and applying (4.16) gives

Ch = (”_1CT)CQ(C“_1) (4.47)

Substituting (4.46) in (4.47)

Co = w‘lcTD'l[I = A(ATD‘lA)'lnTD"lj cw™t (4.48)

= AH
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Finally substituting (4.39) into (4.48) gives the full expression as

o ~ - - - - =1 T.= =
e, = ulce)™ {ot - AlaT @ e) A et e e "} (auas).

Paul A Cross- UCL

A 8.3 Covariance matrix of the estimated observed guantities W

|

A |

The term "estimated observed gquantities"™ is used for 4, the least sguares w
I

estimate of the guantities that were observed, i.e.
n .‘.1
L = L+ 0 (4.50) l
Using (3.29) and (4.39), ve write (4.50) as

1 = %4 {p‘lcTD‘l [1 : A(ATD"lA)'lnTD'l]}b (4.51) It

]

Putting e
g = wlic’p™? [1 - A(ATD‘ln)'lATD'l] (4.52) i
i

simplifies (4.51) to lw
1

i = 14 Gb (4.53)

Now, from (4.36) J
b o= =F(x", L) + v
= =F(x%, Z) + c(Z - £) (from (2.2))

giving

b o= PRy B) % €1 — B (4.54)

Substituting (4.54) in (4.53) leads to 1

A
L

L+ E[—F(xa, £} & Cl = Cﬁ]

]

G[;F(xm, Z) + cE] + (I «~ BC)A (4.55)

Applying (4.16) to (4.55), whilst noticing that the first term of (4.55) is

a non-stochastic vecter and hence has no variances or covariances, we have

ca= (I - GC)CL(I - BTBT) (4.56)

- S




Putting CL = w“l, from (3.7), and expanding gives

1 =L T T 1 T

Fak ~ W t'e & gEiee (4.57)

A o= W -~ BBUW
=)

We now define the symmetric matrix R by

R = A(ADta)tap™ (4.58)
Then, from (4.52) and (4.58),
6 = wlich™(1 - R) (4.59)
and (4.57) becomes
Cp = wt — v eTo i - ryow™t - wlc (T - RT)D'lcwﬂl
+ w‘lcTD'l(I - R)D(I - RT)D“lcw‘l (4.60)
The fourth term of (4.60) can now be expanded as follows
fourth term = W -C'DL(D - RD - DR' + ROR' )0 tou™t
- w1 - rR-0oRD + RORTD Y )cut (4.61)
but, using (4.58), we may write
ROR'DY = a(aTota)taTo~toota(aTota)taTol - R (4.62)
and
prR'or = oo la(aTota)taol - R (4.63)
Substituting (4.62) and (4.63) in (4.61) gives
fourth term = M_ICTD"I(I - R)thl (4_;4)

From examination of (4.60) and (4.64) it is evident that the second and

fourth terms of (4.60) cancel out and (4.60) becomes

-1 1

Cp = W - m'lcT(I - RT)D'lcw‘ (4.65)

which, using (4.39) and (4.58) whilst noticing that R is symmetric, we can

write in full as

cp = e m‘lcT-{I " A[AT(cm'lcT)"lA]‘lAT(cu‘lcT)'l}(cu'lcT)’lcw“l
(4.66)

= KE =
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4.3.4 Special cases

Paul A Cross- UCL

4,3.4.1  Observation eguations

putting C = -1 in equations (4.43), (4.49) and (4.66) and simplifying leads ﬂ

to the following expressions for the observation equations special case:

Cy = (ATMA)—l (4.67)
Ly = wt - a(aTwa)ytaT (4.68)

and, by transposing the second (symmetric) term in the braces in (4.66),

-1,T =

>
Cp = A(A WA) = W - s (4.69)

4.3.4,2 Condition equations

Putting A = 0 in equations (4.49) and (4.66) and simplifying leads to the

following expressions for the condition equations special case:

Cy = w et (oute )y et (4.70)
. = P [ s i
Cp = U L v eT ety ™t o o Co (4.71)

4..3.5 A further note on the use of the unit variance

As was explained in 4.2.4 it is usual, as part of a least sguares computation,
to determine a value of Uﬂz, the unit variance, from (4.25). If it is
decided (as a result of the statistical test described in 5.4.2.2) that the
unit variance is significantly different from unity then any a posteriorj
covariance matrices computed from equations (4.43), (4.49), and (4.66) to
(4.71) must be multiplied by it. This is because the weight matrix used in
these equations would have been incerrect (on average) by the reciprocal of

this factor, as shown in (4.27) and (4.28).

Many authors, such as Krakiwsky (1976), include the unit variance in their

expressions for the a posteriori covariance matrices, e.g. (4.67) is written
-1
Cy = onz(ATMA) (4.72)

In this paper the unit variance has been deliberately omitted from all

e BT e




these expressions to emphasise that it should not be used without first

Paul A Cross- UCL

applying the relevant statistical test. To take an extreme example of the
possible misuse of (4.72), imagine a traverse which, by chance, closes
perfectly (most surveyors are lucky enough to achieve this occasionally).

Then a least squares computation could lead to zero residuals and a zero value
for GDZ. Hence (4.72) would indicate perfect coordinates for all points;

this is obviously nonsensical (all that has happened is that the errors around

the traverse have summed to zero - they are not all zero).

4.4 Interpretation of a posteriori covariance matrices

This section is primarily concerned with CQ, the covariance matrix of the

parameters. Apart from a short section (4.4.5), little attention is paid to
CE,
is seldom computed in practice (except when the method of condition equations

the covariance matrix of the estimated observed quantities, because it

is used). CG’ the covariance matrix of the residuals, is discussed in section!

as its main practical use is in connection with statistical testing.

Basically CQ is used to assess the precision of a position-fix. A number of
different measures of precision can be employed and their computation and

interpretation are discussed below.

4.4.1 Positional standard errors

Simply by taking the sgquare roots of the relevant diagonal elements of CQ we
can determine the standard errors of all coordinates. Hence each guoted

coordinate can be accompanied by its standard error.

It is important to realise that such standard errors are a function of the
chosen coordinate system and are said to be "refersnce frame dependent". 1In
other words, coordinate standard errors measure the precision of a pointfs
position with respect to the fixed point(s) used when setting up the basic
mathematical model (2.3). In situations where a number of points are being
fixed simultaneously (e.g. in a triangulation network or an acoustic beacon
calibration), great care must be taken with regard to the interpretation of
positional standard errors because, in general, the further a point is from
the fixed point(s) the larger its positional standard error will be. Hence
the proper interpretation of a high standard error is not necessarily that the
point is weakly determined but perhaps that it is simply far from a fixed

point (i.e. a point where the reference frame is defined).
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In some problems, e.g. the fixing of an off-shore oil platform for the
purpase of assessing the "ownership" of the oil it recovers, the reference
system is of very special importance because of the way the boundaries are
‘ defined, and it is likely that knowledge of positional standard errors (so
— long as they are related to the proper reference system) would be essential.

In other situations, such as for most engineering work, the choice of the

me | fixed point is quite arbitrary; yet positional standard errors depend on this
3 point, so they would reflect the choice rather than the required precision.
’ In such cases we search for measures (such as some of those in 4.4.2 and

4,4,3) that are invariant to the choice of a single fixed point.

4.4,.2 Error ellipses

J
|

' In two~dimensional position-fixing work the positional standard errors
|

!

§

o discussed in 4.4.1 would be the standard errors of northings and eastings or
o latitudes and longitudes, i.e. in two orthogonal directions. It is often

useful to know the standard errors in other directions as well and the error
ellipse is a way of describing standard errors in all directions. Consider

orthogonal axes x and y rotated by an angle ¥ to directions p and g in Fig. 4.4

x

Fig. 4.4

The rotation can be expressed in matrix algebra as

f p cos§¢ siny *
the | " (4.73)
q —sin{ cos § y
= 4 =
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Applying (4.16) to (4.73) gives

2 2

c'p cpq cos ¥ siny || o, dxy cos§y —-siny
a < ) sin cos ¥ a c - sin ¥ cos ¥
-si
e g \ yx oy

from which we can extract the positional variances of the fix in the directions

p and g:
2 2 v 2 2 v
= i 4.74
cp = cos ¢ o, + sin ¥ Oy + 2 cos{ siny cxy ( )
2 2 2 2 2
o - 3 4,75
o0 = sin"y 0" + cos to  -2cdsysinyo ( )

) 2
To determine the direction ¥ in which cp“ is a maximum (or minimum) we
differentiate (4.74) with respect to ¥ and equate to zero to yield

2 2 v 2
- 2 cos 'é,rm sin 1er t:!'x2 + 2 siny_ cos ¥ By * 2(cos ¥, sin ¢m) cxy =

giving
in 2 o3 ¢ +sin 2¢ © - + 2 cos 2¢_ @ = 0
— RN 2, Ty m oy m xy

2 2
-.. = 2 g - g 4.76
tan 2¢m ny/( ” y ) ( )
There are two possible solutions to (4.76), which we will call ¥ oo, and ¥ .
(they will be 90° apart). Substitution of each into (4.74) will yield the
maximum and minimum variances cn21ax and c;in' Of course until this substitutic
has been made it will not be known which of the two solutions to (4.76)

corresponds to the maximum and which to the minimum variance.

An ellipse drawn with its major axis in the direction *max and with semimajor
and semiminor axes of length cmax and crnin respectively is called an error

ellipse.

It is possible to derive alternative formulae for cmax and Umin which do not

involve wmax' We proceed as follous.

Rearranging (4.74) as

0_2
m

2 2 2 2
c o
cos” ¥( i+ tan ¥ g B 2 tany oxy) (4.77)

and putting
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on

cuszw = l/secZ¢ = Il + tan2¢)
and .
t = tanty (4.78)"
leads to
2 _ 2 ] 2 [ 2 2 ] 2 [ 2 ]
o = [1/(1 +t)|o "+t /(1 + t7) o, & 2t/(1 + t7) .
(4.79)
Also let
2 2
a = O -0 (4.80)
and
b o= 9 (4.81)
Then, for @_ =@ or ¢_. , we have
m max min
tan éwm = 21— tz) (using (4.78)) (4.82)
= 20 [(o 2.0 2) (from (4.76)) (4.83)
- sl B 2 x .
- 2b/a (from (4.80) and (4.81)) (4.84)

Equating and cross—multiplying the right hand sides of (4.82) and (4.84)

gives
2
bt“+at-b = 0 (4.85)
with solution (taking positive sguare root)
2 2.3
t = |-a+ (a° + 4b7)% |/2b (4.86)
putting
2 2%
c = (a + 4b ) (4-87)
simiplifies (4.B6) to !
£ = (5-—a)f2b (4.88)
In preparation for substitution into (4.79) we can derive, from (4.88)
2 2
1/(1 + t°) = 267/(c(e - a)) (4.89)
2 2
/(L + %) = (e~ a)/2c (4.90)
t/(1 + £2) = b/e (4.81)

o B

——
—
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Substituting (4.89), (4.90) and (4.91) into (4.79) gives
2 _ 2 2 [ _ 2 [ ]
2 = [2¥(ele -]+ [(c a)/zc] 0% + [20/c] o,
(4.92)
which, after using (4.81), becomes
2 2 _2 z2 _ 2 2
O o = [l/(Zc(c - a))] [4b o . + (¢ = &) o + 4b (¢ - a)]
(4.93)
but, from (4.80), we have
2 2
o, = a+0, (4.94)
Substituting (4.94) into (4.93) and rearranging yields
% |
Omax = l:l/(.?c(c - a))] [(4'32'1' c? i 2ac) c‘yz + 4b2r3:| (4.95)
2 2 2 ’
= |1/(2c(c - a)) | |(2c° - 2ac) o, + 4b“c | (using (4.87))
(4.96)
- cy2 + 2b2/(c - a) (4.97)
but, from (4.87), we have
B (c2 - az)/4 = (c - a)(c + a)/4 (4.98)
and substitution of (4.98) in (4.97) gives
2 2
Orax = 9y * (c + a)/2
2 2 ' Y
= 3 (ax +0, * c) (using (4.80)) (4.99)

Then substituting (4.80) and (4.81) into (4.87) and substituting the result
into (4.99) yields

2 2 2 [ 2 2.2 2]‘]‘} :

— %+ - < - 0 N

o 3 {cx +o."+ CH o, 1 #da,, (4.10 )‘
Similarly taking the negative square root in (4.86) yields

2 2 { 2 g _ [ 2 _ .22 2]5} o)
Opin = ¥19% *9 (cr)< cy) A, (4.1
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These alternative formulae are important from a theoretical point of view
because they establish a link with the eigenvalues of the covariance matrix
Cg (see (4.104)), but in practice they are not very useful. This is because
(4.76) has two solutions, wmax and *min’ so (4.74) must be used anyway to
distinguish between them. Hence 9 ax and B would have already been

determined.

It should be noted that the error ellipse does not quite describe the
standard error in all directions, although it is a good approximation to it.
The exact value of cp, as given by (4.74), is the pedal curve of this ellipse
and is shown by the dotted 1line in Fig. 4.5. It is the locus of the point §
where ST is perpendicular to 0S and tangential to the error ellipse. It is
the error ellipse rather than its pedal curve that is generally most useful

in practice so for most applications it is unusual to see this pedal curve

drawn.

=Ry
- ~
-
P >
o
9% \
i s L |
/ \"*\ /
7 >3 — >y
LY £
. /
! o min ’
/\ o max “
/ -
-
/ -
L e
N
\_\ -—’,/
- = .
Fig. 4.5

It will be explained in 5.2.2 that if the observational errors belong to a
normal distribution then the resulting two-~dimensional positional errors
belong to a bivariate normal distribution and it follows that there is a
39.4% probability that the least squares estimate of a station's position

lies within an error ellipse centred at its true position. Of course in

- 5% =
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préctice true positions are not known so error ellipses have to be drawn uwit
their centres at the least squares estimates of the stations! positions. It
is then sometimes said that a station's true position has a 39.4% probability
of lying within its error ellipse but this statement is incorrect and its use

should be avoided. It is better simply to refer to the error ellipse as the

39.4% confidence region.

For a more detailed account of the properties of the error ellipse and its
pedal curve readers are referred to Bomford (1980, 719-724) and Richardus
(1966). It is, however, interesting to note here that the sizes of the semi-
major and semiminor axes of an error ellipse are given by the square roots of
the two eigenvalues of the matrix

x2 ny

o 2

o
xy y .

=]

This is simply demonstrated as follows. Let A be an eigenvalue of the above

matrix; then

c - A c
% Xy
: = D (4.102)
o] g ==k
Xy Y
g 2 2 2
i.8. (UX - l)(cy -A) - ny = 0
or
2 2 2 2 2 2
A = (cx #10, 5 - o, cy - cxy = B (4.103) |
with solutions
2 2 2 249 2 _2 2 &
o & % [ - N ] } '
P 1 {(cr>< + 8, ) (c:rx ¥ By ) 4(cx cry O )
which rearranges to
2 2 [ 2 2.2 2]%} -
= = & - .104
A = 2{(ax +9.) CH o) + 4 (4.104) |

which is identical to (4.100) and (4.101).

Also it can be demonstrated that the eigenvectors corresponding to the two
eigenvalues contain the direction of the major and minor axes respectively.
More generally we coften consider that the n eigenvalues of any n x n

covariance matrix describe an n-dimensional "hyperellipsoid" and the n £

s B s



eigenvectors describe, in n-dimensional space, the directions of each of
the axes of this hyperellipsoid. Although this may seem at first sight to
be somewhat theoretical and impossible to conceive it does have some
practical uses, for instance it affords a means by which large networks can

be compared (e.g. largest eigenvalue or volume of hyperellipsoid).

Error ellipses as described in the foregoing, with x and y in (4.73) referring

to the coordinates of a survey station, are usually called absolute error
ellipses. It should be noted that the remarks in 4.4.1 regarding the
importance of the reference system to positional standard errors also apply
to absolute error ellipses, i.e. they increase in size with distance from
the fixed point(s). Ashkenazi and Cross (1972) demonstrate this with a

practical example.

For large networks the patterns of the absolute error ellipses contain
useful information. Error ellipses with minor axes pointing towards the
fixed point indicate orientation weakness and suggest that more azimuth
control is needed. Conversely, if all major axes are pointing towards the

fixed point, more scale control is required.

In practice we are often more interested in the relative position of two
points. In this case if we interpret x and y above as differences in

position between the points i and j we can write

X -1 0 1 1] X
= (4.105)
y g <3 0 1 Yi
%
J
S
- - ¥
and applying (4.16) to (4.105) gives
" o " 2 2
x X By "~ E8,
1 J 1]
Uyz = cy % + O 2 - 20 (4.108)
c = @ - @ - C + @
X %V
Y 1y:. xlyJ iji nyJ

which can be used in (4.74) and (4.76) to compute the major and minor axes

and orientation of the relative error ellipse between points i and j. Note

= B5 =
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that all the quantities on the right hand side of the equality in (4.106)

are found in the covariance matrix CQ.

Relative error ellipses are invariant to the choice of a single fixed
station and are generally more useful than absolute error ellipses for

reasons explained in 4.4.1.

4.4.,3 Standard errors of derived guantities

The quality of the coordinates estimated by a least squares computation is
often best expressed by the precision of quantities derived from them.

This is especially true when this precision relates closely to the intended
use of the coordinates. For instance, if two points on either side of a hill
have been fixed in order to build a tunnel between them it would be necessary
to use these coordinates to compute setting-out directions at each end of
the tunnel. 1In fact the coordinates are not really of prime interest: they
were only determined in order to establish the directions. Hence the
standard errors of the derived directions could be of special importance and
would be the best way to measure the precision of the fixed positions.
Expressions for the standard errors of such derived gquantities can be

obtained as follows.

Let § be a vector of k quantities derived from a set of estimated parameters

~ - =
X via the vector function

A

q = F(xD - Q) (4.107)

(Note from 2.2 that the final values of the parameters are given by xU, the
provisional values, plus X, their small changes estimated by the least

sguares process. )

Expanding (4.107) by Taylor's expansion gives

4 = F(x%) +-£ﬁ% % (4.108)
Ox '
or
q = F(x°) + 8% (4.109)

where B is a k x m matrix containing the first differentials of the
functional relationship betuween a and xD. Matrix B is of a similar form to
matrix A in (2.19). Applying (4.16) to (4.109) whilst remembering that

F(xD) is non-stochastic leads to

= B
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T
Cy = BC4B (4.110)

As an example, imagine that it is required to find the standard error of a

plane direction o between two stations i1 and j. The relevant elements of %

would be

~

-
X = (dEi dh, dEj de) (4.111)
ﬁ would have just one element «; F(x0 + Q) would be

¥ = % e D) = o e (£5 - E))/(N; = N) (4.112)

B would have a single row whose elements would be given by differentiating

(4.112), viz.

oa 2
B = %, = (N; - N,)/d
do 2
B, = W, = - (Ei = Ej)/d
el
B = 2
3 E. = - (N, =N,
1 %, (N J)/d
L~ 2
Boy ™ o, (g; - E5)/d
where
2 2 2
d = (Ei - Ej) + (Ni - Nj)

Then, with the reqguired elements of CQ determined as in 4.3.1, the variance
of @ (which would be the sole element of EG) would be given by (4.110). Of
course, in general, several quantities may be involved and Ca would be a full
matrix containing both the variances and the covariances of the selected
derived quantities. It is worth remarking, however, that in practice the
covariances of the derived quantities may not be very useful so it may be
efficient, from a computational point of view, to compute the variances only,
following the procedure in the above example (i.e. considering each derived

gquantity independently).

Standard errors of certain relative deribed guantities, such as angles,
directions, distances and height differences, are invariant to the choice of
a single fixed station and are consequently especially useful measures of
precision when the coordinate system is arbitrarily chosen. Ashkenazi and

" Cross (1972, 1976) discuss this point and give examples.

- BT =
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4.4.4 Single number measures of precision

There are some situations in which it is desirable to use a single number to
express the precision of the position of single (or groups of) points. For
instance, in a comparison of alternative observation schemes for a given
position-fixing problem, the precision of each scheme must be "measured" by a
single number in order to say which is the more precise. Although it is
unrealistic (especially for large networks) to use one number to describe

completely the precision, the following are mentioned as possible candidates.

(1) One possibility is a quantity related to the trace of CQ, €.0.
[Tr(CQ)]/m, the average parameter variance. Care must be taken to
include only elements corresponding to positicnal unknowns in Q. Other
parameters may have different units and so invalidate the summation

made in computing the trace.

(ii) Secondly, the average size of error ellipses may be informative. Note
that if absolute error ellipses are used (and if size is defined as
2

c + 02. ) this measure is virtually the same as (i).
max min

(iii) Thirdly, some surveyors use the spectral condition number of the normal
equations (the ratio of the maximum to minimum eiganualues). This can
be interpreted as a measure of a network's precision because it
reflects the numerical ill-conditioning of these equations. It has the
disadvantage of not having a real physical meaning, other than as

described in 4.4.2, and of being difficult to compute.

(iv) Finally, the average standard error of a derived quantity may be
helpful. A commonly used, and most effective, single number measure
can be obtained by averaging the standard error of a number of similar |

}

(usually arbitrarily selected) derived quantities. The choice Df'

guantities would be a function of the purpose of the network. ‘

4.4.5 Covariance matrix of the estimated observed gquantities ‘

Apart from its limited use in statistical testing (see (5.34) in 5.4.1.3), the,
caovariance matrix of the estimated observed guantities, Cﬁyis seldom of
interest. This is because usually the main objective of a least squares
computation is to determine a set of parameters and so it is naturally C;,

their covariance matrix, that is required.
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An exception is the special case of condition equations, where there are no

Paul A Cross- UCL

parameters and we are only concerned with estimating the quantities that have
peen measured. Usually CE would be used either to obtain the standard errors
of the estimated observed quantities (by simply taking the square roots of the
diagonal elements) or else to aid the computation of the covariance matrix of
some derived quantities. For instance, if a triangulation network was
computed by the method of condition equations, the result would be estimated
angles, distances, azimuths, etc. These would later be used to compute
coordinates and we would be interested in the covariance matrix of these

coordinates so that the technigques of 4.4.1 to 4.4.4 could be used.

The process for computing the required covariance matrix is identical to that

described in 4.4.3. If ? is a vector of derived coordinates
Cy = BCHB' (4.113)
g Z :

where B is a Jacobian containing the first differentials of the functional

relationships used to compute the coordinates from the estimated observed

guantities.

4.4.6 Non-positional standard errors

In many position-fix computations the vector of parameters will consist only
of coordinates (or small changes to coordinates in non-linear problems).

In some problems, however, such as example (b) in 2.1, one or more of the
parameters may relate to the observations themselves (e.g. frequency errors
or scale factors) or to the coordinate system (e.g. translation parameters).
In such cases it would be usual to analyse the variances of these parameters

separately from those of the coordinates.

Usually only the relevant diagonal elements of EQ would be of interest and
these would be used to compute the standard errors of all the non-positional
parameters. Hence we would have a measure of their precision which could be

guoted alongside their values,

There are two main uses of such a measure of precision. The first is to help
decide on the significance of a parameter (in conjunction with the statistical
test in 5.4.3.2). Basically, if a parameter is very small compared with its
standard error there would be considerable doubt as to whether or not it should
have appeared in the model in the first place and it may be worthwhile to recast

the model without it (hence increasing the degrees of freedom which, in general
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is a desirable action from the point of view of the statistical testing

discussed in section 5).

The second use is in the measurement of the quality of a network with respect
to systematic errors. For example, if a scale unknown were included in the
model then its standard error would indicate how well the scale of the
distance measurements to which it refers was determined, i.e. it would be a
measure of the probability of the existence of scale errors in the estimated
coordinates. Of course such an interpretation assumes the "fixed scale" of
the network is correct (fixed scale would be provided either by fixed points

or by distance measurements without scale unknouns).

4.4.7 A note of caution

Sections 4.4.1 to 4.4.5 have derived and described a number of extremely
valuable methods of assessing the precision of position-fixes. It is, however,

necessary to issue two warnings on their use.

(i) The correctness of all three a posteriori covariance matrices depends
directly on the correctness of the estimation of C, (see 4.2). 1If the
precision of the measurements has not been properly estimated, the

a posteriori covariance matrices will be of little value.

(ii) The a posteriori covariance matrices only measure the precision of
position-fixes. This is not sufficient to describe fully the guality
of a fix; it is essential to quote also some measures of reliability
(e.g. as in 5.4.1.3) and to have some indication of whether or not
systematic errors may be present. For example, Ashkenazi and Cross
(1972) found that the precision of block VI of the European triangulatif
network was such that the average a posteriori standard error of a
derived distance was 2.5 ppm but Weightman (1975) found an overall’

3.1 ppm systematic error when comparing the triangulation with
satellite-Doppler results, hence rendering the earlier estimate of

limited value.

4.5 The desian of position-fixes

It is evident from (4.43), (4.49), (4.66) and their special cases (4.67) to
(4.71) that we do not need the actual measured quantities (vectors £ or b)
to compute the a posteriori covariance matrices. So long as a set of

measurements has been planned (vith a covariance matrix Cﬂ) and the
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approximate geometry is known (matrices A and C), the precision of a fix can
be determined. Hence the a posteriori covariance matrices can be used to

design position-fixes.

It is now generally accepted by geodesists that it is useful to consider four
separate geodetic design problems as suggested by Grafarend (1974). Most
practical design problems will then be a combination of one or more of these

four. They can be summarised as follous.

Zero order design is the selection of a suitable reference system. This

problem has received little attention and will not be considered here. It is
obviously not relevant to position-fixing problems where the coordinate

system is not open to choice, e.g. single point positioning offshore.

First order design is the design of a network configuration, i.e. the choice
of the positions of the points in the network and of which quantities to
measure. There is usually little choice of positions of the points as these
are largely dictated by the topography and the requirements of the survey.

In some cases, however, there may be a choice: for example, in an off-shore
single point-fix there may be a number of possible shore stations that could
be used. Whether or not there is a choice of measurements will depend on the
situation. For instance, in an engineering network the surveyor can usually
choose between angle measurements and distance measurements or a combination
of both, whereas at sea a hydrographer may have only one position-fixing

system on board.

Second order design is the choice of observation weights, i.e. with what

precision should the measurements be made (and hence what instruments should
be used)? Again, whether or not there is a choice of instrumentation will
depend on the situation. It should be pointed out here that the second
order design problem is sometimes used to solve the first order design

problem in the following iterative way:

(i) postulate a large number of possible observations

(ii) solve the second order design problem

(iii) discard observations with low weights and, if required, go back to (ii).
Hence in practice the second order design problem is more important than its
definition would suggest.

Third order design is the improvement of existing positions by the inclusion

of additional observations. This is especially useful in permanently

e I e
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maintained networks such as national triangulation networks or shore control
stations for off-shore position-fixing. As new instrumentation becomes
available it is desirable to make additional measurements to improve the
quality of the existing positions and the guestion of which measurements to

make then arises.

Using the observation equation model we can write down
Cp = (ATwA)™2 (4.67)

and then say that, given CQ, the required precision, the first and second

order design problems are the solutions of (4.67) for A and W respectively.

Usually there is a large (possihly infinite) number of possible solutions to
a particular geodetic design problem and we are mainly interested in the
solution that can be implemented with the least cost. This solution is

called the optimal design and the two approaches currently used to determine

it will now be summarised.

&.5.1 Computer simulation

Computer simulation is now common practice in many geodetic and engineering
organisations and is also ideally suited to most off-shore position-fixing
problems. The starting point is the precision criteria, which are usually
expressed in terms of the quantities discussed in 4.4, e.g. all error
ellipses should be less than a specified size or all standard errors of
derived distances less than a specified size. Then the process is as

illustrated in the flow diagram in Fig. 4.6

Specify Choose an Set up )
precision »~ Oobservation > computer model

. . ¥
criteria scheme of network

Compute ves| Are criteria Compute
cost within spec ? precision
criteria
X
Is
network ves > END
optimum

Fig. 4.6
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The phrase "set up computer model" in Fig. 4.5 refers to the computation of
the a posteriori covariance matrix of the parameters, CQ, and the phrase
"choose an observation scheme" includes selections relevant to the first,
second and third order design problems, i.e. the network geometry may be
changed by adding and deleting points or by changing the measured quantities,
the precision of the planned measurements may be changed by altering Cz,

and additional observations may be included. There are many examples of the
application of the computer simulation method to practical problems, for
instance Chrzanowski (1981) on the design of tunnel networks, Cross and
Whiting (1981) on the design of level networks and Nickerson et al (1978) on

the use of computer simulation with interactive graphics.

4,5.2  Analytical methods

Analytical methods involve direct mathematical solutions to optimal design
problems and are currently at a very early stage of development. The only
problem to which satisfactory solutions have so far been reached is the
second order design problem applied to the special case of observation

equations, i.e. the solution for W in (4.67)

(alua)™t - co (4.67)

in the form
W = f(A, CQ) (4.114)

where CQ contains the required variances and covariances of the parameters
and is called the "criterion matrix". A full discussion of the various
expressions for (4.114) is beyond the scope of this paper as it would need
to include advanced mathematical technigues such as generalised matrix -
algebra and operations research. Cross (1981b) is a review of possible

solutions to (4.114) which includes many references to more detailed

publications.

It is probably true to say that analytical design techniques are still at the

research stage and almost all practical geodetic design problems are solved

by the computer simulation method (or else purely by use of experience).

- B3 -
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B Statistical testing
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It is usual both before and after a least squares computation to want to ask
a number of guestions regarding the significance of certain aspects of the

observed and computed data. Two examples are as follouws.

(1) Do all measurements come from the same normally distributed population?
If not, one or more may contain gross errors and need to be rejected or
perhaps may have to be assigned different a priori variances from the

rest.

(ii) Are two measurements or estimates of the same quantity significantly
different? If so, the guantity itself may have changed (e.g. a

distance or position may change owing to land movements).

The answers to such gquestions are investigated by means of a process known as
statistical testing. In this section a review of the statistical tests most
useful for position-fixing will be given along with some examples of their
application. Unlike least squares, which is the primary subject of this
paper, statistical testing will not be given a full mathematical treatment
(the subject is too large for this anyway). The approach will be to produce
a practitioner's guide to the topic with emphasis on methodology rather than
theory. Before describing the statistical tests themselves it is necessary to
introduce the terminology of statistical testing and to describe the four
probability density functions which form the basis of the tests to be

described.

5l Terminology of statistical testing

Statistics, in particular statistical testing, has its own jargon and it is
important to define the following terms carefully before proceeding. The'
definitions are taken from Wells and Krakiwsky (1971) but are similar to those,

in virtually any book on mathematical statistics.

Statistic: a quantitative item of information (e.g. a mean or standard

error) deduced from the application of statistical methods.

Variate: a guantity (also known as a random variable) which may assume
any one of the values of a specified set with a specified
probability, i.e. with specified pdf (probability density

functions were explained in 4.1).

.



population: a collection of all objects having in common a particular
measurable variate. We will deal here with infinite
populations and use Greek letters (e.g. ¢ for standard error)

to describe population statistics.
Individuals: a single member of a population.

Sample: a group of individuals drawn from a population. UWe will use
Roman letters (e.g. s for standard error) to describe sample

statistics.

To give an example of the use of these words, let us imagine that we have
measured a distance n times under similar circumstances. The length of the
line would be the yariate and the n distances would be a sample of all the
possible infinite number of measurements which constitute the population.
Any one distance measurement would be an individual and the mean of the n
measurem, d, is an example of a sample statistic whilst (assuming no
systematic errors) u, the true distance, would be the mean of the population

and would be a population statistic.

In statistical testing we use the term pull hypothesis, HD’ to describe the
hypothesis we wish to test. For example, if we wanted to know whether the
mean of the sample of distances above was significantly different from the
true distance (perhaps obtained by some more precise measurement technique)

we would write
H.:d...—..p-

Tested against this null hypothesis is an alternative hypothesis, HA’ which

might be, in the above example

Hy: d 7 B

we

Note that if the null hypothesis involves an equality then the alternative

hypothesis will be an inequality and we term the test a two-sided test

because in the above example we would reject the null hypothesis both if d > p

and if d <. If, however, we write
: =
HD' d sp

HA: d>p

- 65 —
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i.e. we do not mind by how much d is smaller than p, we would term this a

one-—-sided test.

The terms two-tailed and one-tailed are also used.

When a statistical test is carried out there are two kinds of error which may

be made.

1

(1) The null hyposthesis could be rejected when it ought to have been
Such an error is called a type 1 error and the probability

accepted.

of making such an error is called the level of significance of the test

and is usually denoted by o or more commonly by 100a¢%, where o lies

Alternatively the term level of confidence, given by

between 0 and 1.
(1 - «)100%, can be used.

(ii) The null hypothesis could be accepted when it ought to have been
rejected. Such an error is called a type 2 error and the probability

of it occurring is denoted by B, or 100 f%.
referred to as the power of the test.

The situation is summarised in Table 5.1.

(1 = B) is usually

Note that there is an inverse

ACTUAL SITUATION
DECISION
Null hypothesis Null hypothesis
true false
Accept null hypothesis Correct Type 2 error
Reject null hypothesis Type 1 error Correct
Table 5.1

relationship between ¢ and B:

vice versa.

if we reduce @ then B must be increased and

For instance, in the case of the rejection of ocbservations with

gross errors, if we apply a test which ensures that all observations are

accepted we would never reject a "good" observation but there is a high chance

of accepting a "bad" observation (type 2 error).

all our measurements we would never make a type 2 error.

Conversely, if we rejected

_for o and B is subjective, i.e. it needs to be made personally by the survey®

carrying out the tests.

- 66 =

The choice of valué

Paul A Cross- U‘L

R —

-



Finally, it is mentioned that the tests described in this paper come under the

general heading of parametric tests because they are all based on statistics

computed from the samples. Tests not based on these are called non-parametric

tests, B.g9. sign tests and rank tests. Such tests are not discussed here.

5.2 The normal distribution

a—

5.2.1 Single variate

As far as surveying is concerned (and indeed most other branches of science
and technology) the normal distribution is the most important of all the many

probability distributions. Its pdf is defined by

o(y) = (1/(e /2m) exp {- (y - p)%/20%} (5.1)

where y is a single variate with standard error ¢. Fig. 5.1 shows the general

form of the curve; note that it is_symmetrical about y = p with points of

@
4

L0 VR — e e e e = -

POINTS OF INFLECTION

pto

Fig. 5.1

inflection at y = p + 0. We find it convenient in practice to use a standard

normal distribution which relates to a variate z, where

(y = p)fo (5.2)

z

I

and has a pdf

p(z)

(1//2m) exp {}22/2} (5.3)

.
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i.e. it has a mean of zero and standard error of unity. From the definition
of the pdf (equation (4.1)) the area under the curve is the probability.
Hence by integrating (5.3) as follows

b
Pla=zs=shb)= j (1/4/2m) exp {—22/2} dz (5.4)

we can determine the probability of z lying in the range & to b. The
integration is relatively easy to perform: exp (—22/2) is expanded using the

exponential expression
. 2 fc
exp (x) = x + x/1V'+ x° /21 + x°/3% + ... stc, (5.5)

and we then only have to integrate a polynomial. In fact the area under the

standard normal curve is usually tabulated for a = - @ and b typically D to +3,

for example Table 5.2. Use of such tables is very straightforward. For
instance, to find the probability of z lying between -1 and +1 we look up the

values of the area for b equals -1 and +1 and subtract them, i.e.

Pl-1 ==z £1)

P(- w2 £1) = P(- =2z = 1) f

I

0.8413 - (1 - 0.8413)

0.6826 (5.6) ;

Notice that for our real variate y, with mean p and standard error ¢, then,

from (5.2) f
y =20 4+ U4 (5¢7)

Putting z = =1 and z = +1 into (5.7) gives

y =p+ocandy=p-=-¢0 g
Hence, from (5.5)

P(b ~0 <y <p+0) = 0.6826 (5.8)

That is to say that the probability of a variate being within one standard
error of its mean is 0.6826 or 68.26%. This is an important result with
implications in the interpretation of many of the results in section 4. Foré
instance, if the a posteriori standard error of a coordinate is, say, 1lDcm W?
can state that, so long as a normal population is assumed, there is a 68%

(approximately) chance that the true error is less than 10cm. . Roughly

- 68 - g
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two-thirds of all variates lie within one standard error of their mean.

Table 5.2 can also‘be used to derive the following useful figures:

Paul A Cross- UCL

range of variate b+ o b+ 20 p+ 2.50 b+ 3
probability (%) 68.26 95.44 98.76 99.74

5.2.2 Multivariate

If we wish to consider several variaties simultaneously it is necessary to use

the multivariate normal distribution with the pdf
-1 |2 2 Te =1
8(x) = [(|o 7t ¥/em™?] ee {-tx - e, Hx - w2} (5.9)

where X = [X.y Xny eesy X ] is a uectnr of normally distributed variates
1* "2

with mean vector p = [pl, Bos wees B ] and covariance matrix E . The symbol
C -1
X

probability of a number of events, e.g. ay < Xy < bl, a2 < x2 = b2 etc.

occurring simultaneously, we need to integrate #(x) as in equation (4.3). Of

denotes the determinant of the inverse of Ex' To determlne the

special interest is the bivariate case where Xy and X, are the eastings and
northings (or latitude and longitude) and we would like to find the

probability of the true error in x, being within one standard error at the

same time as the true error in X ieing within one standard error, i.e. the
probability of the least sguares estimate of a point lying within an error

ellipse centred at tﬁe unknown true position of the point (as described in

4.4,2). It can be shown, e.g. Mikhail and Gracie (1981, 230), that this

probability is 0.394 or 39.4%. Similarly the following figures are given:

£ 1.000 2.000 2.447 3.000
P 0.394 0.865 0.950 0.585

where P is the probability of a point lying within an error ellipse drawn with
semi-major and semi-minor axes of 0 ax and O sne It is common practice to
draw error ellipses 2.447 times their "standard" size and then to be 95% sure
that the true errors in the positions of the points are smaller than those

described by the drawn ellipses.

BeZe3 Importance of the normal distribution

It will become evident in section 6 that observational errors do not need to

be normally distributed in order to apply least squares. UWe do, however,

=i BB
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neea‘to have a normal distribution (or some other known pdf) in order to make
statements, such as in 5.2.1 and 5.2.2, regarding the probability of certain
events occurring. Also, it will be seen that the normal distribution is

crucial to the theory of the statistical tests to be described in 5.4.

It turns out that there are actually good theoretical reasons for using the
normal distribution pdf even when we know nothing of the real pdf of our
observations or even when we suspect the pdf not to be normal. This is
because of a remarkable statistical theorem known as the central limit theorem,
The theorem itself will not be explained here but is presented formally in
virtually any text on mathematical statistics (although for a proof a more
advanced work such as Cramer (1946) would be required). In this paper we
merely mention one of the many implications of the theorem, that if we have

a variate x that is the sum of a number of independent variates X135 Xpy eeey X
then as n increases the pdf of x approaches a normal distribution, irrespective
of the pdfs of Xq3 Xpy evey X. Now the errors in almost all suruezing
measurements are in fact the sum of a number of small errors, so it follouws
from the central limit theorem that, irrespective of the pdfs of the small
errors (and so long as there are more than about four of them), a normal pdf
will closely describe the total error of a survey measurement. Hence special
attention is paid to the normal distribution in almost all books on the

treatment of surveying measurements. !

5.3 Sampling distributions

In order to carry out certain statistical tests we need to know something of
the pdfs of various functions of gquantities that are themselves normally
distributed. These pdfs, sometimes called sampling distributions, are both
lengthy and difficult to derive, so here we will merely name, and explain.
the relationship between, the three most important ones. Before doing so it

should be emphasised that, in general, functions of normally distributed

x2 is not normally distributed even though x is.

Budal Chi-sguare distribution

;
r
i
|
I
|
variates will not be normally distributed; for instance, the random variab18¥
J
;
I
|
ﬁ

IF X139 X5y ssey X arev independent random variables, each normally distribuﬁﬂ
with zero mean and variance unity, then the function sz: where [
2 2 2 2 :
= 0T =
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is said to have a chi-square distribution with v degrees of freedom. Notice
that XZV will be a random variable. The shape of a typical chi-square pdf

is given in Fig. 5.2. It should be noted that as v increases so the chi-

square pdf approaches a normal distribution. Table 5.3 gives what are knouwn

as the percentiles of the sz distribution. Essentially a percentile is the
value of sz that, for a given number of degrees of freedom, will be exceeded
with a specified probability. For instance, with three degrees of freedom

the probability of sz being less than 6.25 is 0.90 or 90%. This is illustrated
in Fig. 5.2 and can be confirmed by looking up three degrees of freedom in

Table 5.3. We would say that 6.25 was the 90% percentile of a chi-square

distribution with three degrees of freedom.

g x2 )

}

v=3
90% I
%
; 2
6-25 il
Fig. 5.2

5.3.2 t distribution

v

If we have two normally distributed random variables, x., and x2, each with

1
mean zero and variance unity, then the guantity t given by

t, = xl/(xzz/v)% (5.11)

is said to have a t distribution with V degrees of freedom. The distribution
is often called the Student's distribution after the statistician W.S. Gosset
(at the time a chemist at Guinness's brewery in Dublin) who used the pseudonym
"Student". The t pdf is exemplified in Fig. 5.3, which shows the case for

four degrees of freedom (V = 4). The distribution looks somewhat similar

= T
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to fhe normal and is identical to it when V = =, Table 5.4 gives some
percentiles for the t distribution: as an example, when Vv = 4 there is a

0.9 (90%) probability that t lies between -2.132 and +2.132; this case is

also shown in Fig. 5.3.

A
&

—2+132 2+132

Fig. H.3

5.3.3 F distribution

If we have two variables x2 and y2, both with chi-square distributions, i.e.

x2 = 2 + X = + + X 2
= Xl 2 aas \Jl
(5.12)
2 2 v 2
Y = yl + y2 + sae + yvz

with X153 Xy eeey X, and Yyr Yor eees yV normally distributed with zero~

2
mean and unit variance and with V. and \, degrees of freedom respectively,

e e g ———eee

1 2
the variable !-'\J - given by
. 1°2
2 2
F = (x°/v)/(y"/v,) (5.13)
vlvz X 2

is said to have an F distribution (named after the statistician R.A. Fisher).

The F pdf is shown in Fig. 5.4 and some percentiles are given in Table 5.5. }
As an example, in the case uhere V, = 10 and V, = 20 there is a 0.95 (95%) |
probability that F is less than 2.35 (note that F is obviously always

positive). It is worth noting that when \& = 1 the F statistic is the f

- TP -
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square of the t statistic, and it can be shown that as \b increases the

F distribution approaches the x2 distribution.

2 \Fl
A

95°/n vl = IO
Vo= 10
1 5%
2-35 ¥
Fig. 5.4

5.4 Statistical tests

In 5.1 the basic terminology of statistical tests was given and in 5.2 and
5.3 the distributions upon which all the tests in this paper are based were
described. Now these results will be used in order to explain how to carry
out some statistical tests that particularly relate to the computation of

position-fixes by least sguares.

5.4.1 Identification of outliers

The word "outlier"™ has no strict statistical definition and can only be
defined in an intuitive manner; for instance, Hawkins (1980) defines an
outlier as "an observation which deviates so much from other observations as
to arouse suspicions that it was generated by a different mechanism". The
problem of identifying outliers is very important in surveying, especially
when data are automatically captured and processed, and never seen in their
raw form by the surveyor. Since there is no opportunity in such cases for
him to pick out and investipate obvious gross errors, automatic statistical

methods of detecting outliers are essential.

In position-fixing the problem can arise in two situations, firstly, as

o T i
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considered in 5.4.1.1, when we have multiple measurements of a single
quanfity such as a distance or an angle, or when a position has been computed
many times such as in multiple pass Doppler computations, and, secondly, as
considered in 5.4.1.2, when we have a number of single measurements (or means)
that are "fitted together" during a least sguares computation. It must be
emphasised that the statistical tests that will be described to deal with
these two situations can only "identify" the outliers; they cannot in

themselves distinguish between their two possible causes:
(i) there has been a gross error in the measurement

(ii) the basic mathematical model is incorrect.

In practice, (i) above is more common and it would be usual to reject any
outlying measurements and recompute the position-fix without them. Before
rejection, however, the measurement should be investigated, as the cause of
the gross error may be apparent and it may be possible to correct it, e.g.
two numbers may have been transposed when keying measured data into a
computer. The danger with the automatic rejection of all outliers is that
cause (ii) above may be overlooked and important information rejected. For
instance, consider a single point position-fix by n measured distances to
known stations where n - 1 lines are short and the nth is a long line. If
the measuring system has an unmodelled scale error the nth line will have a
larger residual than all the rest and may be rejected when the proper
solution would be torecast the model with a scale unknown (as in 2.5.2).
Model errors are exceptionally difficult to detect and great care must be
taken to ensure that any information that may aid their detection is not
rejected. Some of the great advances of science, e.g. the discovery of
Neptune from the perturbations of Uranus, are due to observations not guite

fitting their supposed model. '

T o A From repeated measurements

If we have a large number of repeated measurements of the same quantity,

X139 Xpy seey X it is common practice to compute their mean and standard
deviation, X and s respectively, and to compute for the ith measurement the
statistic
= - X J14
T (xi x)/s (5.14)

)
4
:
b
:

If the observational errors are normally distributed T will have a standard

- T4 =
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normal distribution (mean zero and standard error unity) and the probability

of T, being greater than a certain size can be obtained from Table 5.2. If

Paul A Cross- UCL

wve wish to ascertain whether or not any of the measurements are outliers we

set up a test as follows:

Hﬂz X; comes from a normal distribution with a mean of p and standard error ©

(X and s are estimates of p and o)

Hy 3 x; comes from a normal distribution with a mean of (p + gross error) and

standard error o.

We choose a level of significance o (say 0.01, i.e. we are only prepared to
identify "inlying" measurements as outliers in one case out of a hundred) and
look up the relevant percentile for the normal distribution in Table 5.2

(2.58 for @ = 0.01). Then (for this example) we identify as an outlier any
measurement for which T is greater than 2.58 in modulus. Notice that this
is a two-tailed test as we wish to detect both positive and negative outliers.
The chances of failing to detect an outlier (type 2 error) are discussed in

5.4.1.2.

The foregoing procedure strictly only applies when n is very large (say
greater than 30 as a practical guideline). For smaller values of n a
different procedure has to be adopted as the sample mean and standard
deviation may not represent very well their equivalents for the population.
There are many alternative methods but limited detail will be given here as we

are mainly concerned with least squares and 5.4.1.2 is a more relevant problem.

One approach is to use the so-called Chauvenet's criterion which simply posits
that the level of confidence should be chosen to be equal to 1/(2n), so for
say 8 observations, @ would be 0.0625 and we would identify as oputliers all
measurements with r, greater than 1.82 (from Table 5.2). UWhereas if n = 20
then @ = 0.025 and the criterion would be 2.24., This method is simple and
effective but its mathematical basis is rather doubtful as on average it will
identify as an outlier half a good observation (an inlier) per sample
regardless of the size of the sample. It should not be used successively to
search for more than one outlier because of the manner in which & is

related to n.

More rigorous approaches to the problem have mainly been based on the t

distribution; for instance, it can be shown that the statistic

£ = o(n=2)%/(n -1 - )% (5.15)

- TH -
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(vhere r is defined as in (5.14))has a t distribution with n - 1 degrees of
freedom. Hence the t tables (Table 5.4) could be used, just as the normal
distribution tables were used in the earlier part of this section, to decide
whether or not an observation is an outlier. The procedure is simply to
compute the value of t and compare it with a percentile from Table 5.4.
Alternatively, it is possible merely to compute r as in (5.14) but to use
critical percentiles based on the size of sample and the t distribution.
Logan (1955) gives full details of this procedure and includes simple, easy
to use tables (for « = 0.05, 0.01 and 0.001). This technigue is mathematical),

identical to the t statistic above but easier to apply in practice.

The identification of outliers is now a very advanced branch of mathematical
statistics and readers who wish to persue the topic in depth are recommended

to read Hawkins (1980).

5.4.1.2 From the results of a least sguares computation

We need to have some method of analysing the results of a least squares
computation to determine whether or not any of the observations are outliers.,
A method for doing this will now be given; note that although the discussion |
will be limited to the special case of observation eguations, the method can
be extended to handle the combined case (and of course the special case of g
condition equations). Also note that although this section is written g

assuming that the cause of the outlying measurement is a gross error (blundeﬂﬁ
the technigue is equally applicable to detecting model errors as discussed ini
5.4.1. {
Let zi be the ith observation of a vector of n observations £, used in a laaﬁ!
sguares computation. If we suspect that ﬂi contains a gross error Ai whilst
all other observations have only random, normally distributed errors ei,’we

have to set up a test as follouws

H

L1

gtk =8 4, (5.16) |

H

g, =3 + e + 4 (5.17)

|
8° % |
i

Note that if an observation contains a gross error we expect it to belong t0

a normally distributed population, but about a mean of Zi + Ai rather than %j;
Clearly in practice we would want to apply (5.16) and (5.17) to every i
g.

observation in turn.
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We now introduce a test statistic ﬁi, given by
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.Qi = 31/03_ : (5.18) ;
i [i
where
81 = Li - zz ;
and H
3; = the ith observed quantity computed from the parameters ;
derived from a least sguares computation of all the il
observations except Ei _JL
o4 = standard error of 3i. il

{i

i

i :"‘;1
It has been shown by Baarda (1968) that if Hy is true ﬁi will be normally
1

distributed with a mean of zero and variance of unity; otherwise, under HA’

the normal distribution will have mean Bi where

8, = Ai/ua (5.19) i
i |

The test is carried out by specifying a level of confidence (e.g. 95%)
(¢ = 0.05). We can see from Table 5.2 thatﬂ%_ should be less than 1.96 in ]
95% of cases; hence if G& > 1,96 we reject the observation with a 5% chance

of making a type 1 error. If we specify the required power of the test as say
o0% (B = 0.10) we can determine the "upper bound", 62 on 8§, (and hence Ai), ;
i.e. we can determine the maximum size of gross error that will be accepted
(type 2 error) when it should have been rejected one time in ten. This is

done by examining Fig. 5.5. The value of 6; is given as
u
6. = a+b (5.20) il

and a and b are given from Table 5.2 as 1.96 and 1.28 respectively; hence

5 = 3,24
i i

and, from (5.19),

u
2. g
A; = 3.24 3; (5.21)

Therefore, the use of the above values for o« and B and rejecting all
observations with a value Uf‘ﬁi greater than 1.96 will cause rejection of
"correct™ observations in five percent of the observations (type 1 error)

whilst one tenth of gross errors greater than or equal to 3.24 oa. will remain
i
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undetected (type 2 error).

2V2.% |

Fig. 5.5

In practice it would be very tedious te have to compute G& and gy as indicated

by (5.18); hence we would prefer to have a more straightforward fieans of

computing it. It is shown in Appendix 2 that

T, A T %
F) B oo 2
0 = e; Uv/(ei MCGMei) (5.22)
and ‘
T 3
”3; = 1/(ei wcﬁwei) (5.23)

where e is a null vector but for the ith element which is unity, i.e.

i (5.24)

v

Ei = ED, 0, LR ) l, ssay D’ D]

In the case of W being diagonal (which is usual in practice) with the standard;
error of the ith observation being 0., it is shown in Appendix 2 that (5.22) a

(5.23) simplify to

" ~
W, = ui/cﬁ. (5.25)
i
and
oA = O 2/o-n (5.26)
d. i7%v, *
i i
B = ai is the ratio of a least squares residual to its standard error. MNote
that Gi is given by (3.32) and oy . is the ith diagonal element of DG given

i
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by (4.68). It is really quite remarkable that (5.18) and (5.25) should be

equiﬁalent and that there should be such a simple test for the rejection of

Paul A Cross- UCL

outliers using the results of a least squares computation.

If it is suspected that a number of observations simultaneously contain gross
errors then we can use, according to Kok et al (1980), the same one-dimensional
w test described above except that the vector e, in (5.22) becomes e where e

is a null vector but for the elements which correspond to the observations to
be tested simultaneously, which will be unity. Such a test is, however,

rarely carried out.as it would be unusual to suspect a particular group of
observations of containing gross errors and to test every possible group

would be quite impractical. The test is usually used as described, i.e. for
each individual observation in turn, in which case the process is sometimes

referred to as"data snooping".

The foregoing testing procedure, based on the normal distribution, is commonly
known as the B-method of testing, after W.W. Baarda, who first introduced it.
It is strictly only correct when each value of GO_ truly reflects the
population from which each residual has been drawf. This will only be the
case when we are sure that we are using the correct W, either because we have
external evidence or because we have a very large sample of observations. In
general this is not the case and we should adopt a slightly different testing
procedure. Pope (1976) has made a detailed theoretical study of the statistics
of residuals and shouwn that, so long as the unit variance is unity, T,

computed from (5.25), has the following distribution

T, = Wyt )/ (v-o1+ tzv_l)% (5.27)

where t is a t distribution with M=l degrees of freedom and V is the

v-1
number of degrees of freedom in the least squares computation. This is knouwn
as the tau distribution and some of its percentiles are given in Table 5.6.

The testing procedure is as follows.

(i) Carry out the least squares computation in the usual way and compute,

for each observation, Gi and UG 5
i
(ii) Compute, for each observation, the tau statistic from

¥ = Gi/(cD GG‘) (5.28)
1

where &, is the standard error of an observation of unit weight.

= 70 =




(iii) Select a value for «, the level of significance, and compare T with the

relevant critical value in Table 5.6. If T is the greater then the

observation is liable for rejection.

The above process is based on the assumption that only one blunder exists in
the observations. In practice it is quite possible for a number of gross
errors to be introduced, e.qg. a gross centering error during the measurement
of a triangulation network will cause gross errors in all observations at or
to that point. Very little work has been done on this problem but interested
readers are referred to the already mentioned Kok et al (1980) and to

Stefanovic (1978) for details of possible strategies.

5.4.1.3 Reliability of a position-fix

The reliability of a position-fix is a measure of the ease with which gross
errors may be detected. Imagine a single point being fixed by measured
distances to two known points. There would be no redundant measurements and

(3.43) and (4.68) would give both Gi and 04 as zero for both measurements.
i

Hence Gi would be indeterminate and no check for gross errors would be
possible. This of course is reasonable, as any two distance measurements

would produce a position and there is obviously no way of detecting a gross
error. We would consider that such a position-fix was unreliable, although

of course it may be very precise with small error ellipses etc.

It is useful to have some quantitative measure of the reliability of a

position-fix. Pelzer (1979) has introduced the quantity Ti defined by

2 i T
T, = l/(ei Czeiei wcﬁmei) (5.29)

or more simply in the case of a diagonal CL (and hence diagonal W)

2 2 7T
o) 1/(ci e; wcﬁwei)

I

cg /cﬁ (using (5.23)) (5.30)
i
Now, rearranging (5.19), we have
u
Ai = Si o4

(5.31)

|
o
2 =
qQ
[
Q
(=5
Sy
qQ
[
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and taking the square root of (5.30) and substituting in (5.31) gives
i = 5w 1 (5.32)
5 4

where 62 depends only on the chosen probabilities, o and B, of type 1 and type2
errors. Hence once T has been computed for an observation we can simply

compute from (5.32) the maximum undetected gross error in that observation

(with probability B). For instance, using the figures for « and B in 5.4.1.2

we could say that there was a 10% chance of a gross error greater than 3.24

o, T, remaining undetected. It is extremely important to emphasise that Ti

does not depend on U (i.e. on the measurements themselves) so a position-fix

can be analysed for reliability in advance of its actual observation. Hence

both precision and reliability can be considered when designing position-fixing

procedures.

Note that, when W is diagonal, substitution of (5.26) in (5.30) yields

T, = ai/or,\}i (5.33)

i.e. the ratio of the standard error of an observation to the standard error of
its least squares residual (given by (4.68)). Ashkenazi (1980) has suggested

an alternative measure, Psis given by

P
P; = ci/bi (5.34)

where Gi is the standard error of the least squares estimate of the ith observed
guantity and is given by the square root of the ith diagonal element of CE
(see (4.69)). Note that (5.33) and (5.34) are closely related because, when W

is diagonal, (4.69) simplifies to
(5.35)
L4

The disadvantage of Ps compared with Ti is that it is not possible to make the

same kind of simple statement regarding the largest undetected gross error.

Baarda (1968) has described the foregoing concept of reliability as "internal
reliability" and he further defines "external reliability" as the effect of an
undetected gross error on the parameters and on guantities computed from the
parameters. It could be argued that external reliability is more important than
internal reliability as undetected gross errors are of no conseguence if they do
not significantly effect the parameters. External reliability is determined as

follous.

- B -
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A
Consider a quantity {, with least squares estimate Yy, computed from the
. A n . u :
parameters and let Awi be the effect on § of a gross error of size Ai, as given

by (5.32), in the ith observation. Then it is shown in Appendix 2 that, for

uncorrelated observations,

A@i < a? Ys % (5.36)

where
Fal
Y, = ci/cc,. (5.37)

= i
Hence if a gross error equal to the boundary value is made in the ith
observation the resulting error in $ must be iess than Yi multiplied by a
constant multiplied by the standard error of ¥. Note that c@ is evaluated {
according to 4.4.3. Therefore Yi is a measure of the external reliability: it|
is a factor which multiplies the standard error of the desired function of the
parameters to give the maximum effect of A: on that function. Notice that Yi
depends on the selected observation and not on ¢, i.e. it is the same for all
functions of the parameters. Also it can be computed without the values of thﬂ
|

observations and can hence be used as a criterion for the design of position-

fixes.

In the case of uncorrelated observations the relationship between T, and Y;

can be derived as follouws.

Combining (5.33) and (5.37) yields

oy = (e - 62)/d% (5.38)
= 1 (from (5.35)) (5.39)
i.e. yi - 1? -1 (5.40)

Hence the computation of T, automatically leads to Y; It follows from (S5.40)
that if an observation has high internal reliability it must also have high

external reliability, and conversely low internal reliability reflects louw

external reliability.

S.4.2 Variance ratio tests

5.4.2.1 The testing procedure é

There are a number of situations in which it is required to compare the
variances (or standard errors) of two samples to discover whether or not they
come from populations with the same variances. For instance, one variance mﬂf f

kIO o




have been computed from angles measured by observer A and another from those

measured by observer B and it may be regquired (perhaps for the purposes of

Paul-A-Cross-UCL

ujgighting) to find out if the two observers are performing with the same

precisiun. Further examples will be given after the test has been described.

Let 1 and s, be the variances of samples 1 and 2 computed with vl and ”2
degrees of freedom. If al and 02 are the (unknown) variances of the two
populatiuns from which the samples have been drawn we set up the tuwo-sided

test as follows:

Hy: g, =9, (5.41)
Hpt oy # a, (5.42)

It can be shown, e.g. in Mood and Graybill (1963), that F, given by
2y 2
F = & /32 (5.43)

uhere s, > s,, has the F distributiun given in (5.13) with v, and v, degrees !;{
of freedom. Hence the testing procedure is to select a level of significance, '
o, and look up the percentile for Vl and V2 in the appropriate F distribution
table. Note that since we are setting up a two-sided test it is necessary to
double the probabilities in the F distribution table,i.e. use the table for

@/2. If the alternative hypothesis was i

Hy 2 o >, (5.44) ‘wj

we would have a one-sided test and would use the table for o.

Once we have looked up the appropriate value of the percentile, we simply W}

compare it with our statistic computed by (5.43). If the statistic is the

larger we reject the null hypothesis with a probability of a of making a type il

1 error; otherwise we accept the null hypothesis. i

As an example say that Sy is estimated to be 6.0 with 40 degrees of freedom,
s is estimated to be 3.2 with 10 degrees of freedom, and we wish to make the
two-sided test (5.41) and (5.42) with o = 0.02 (2%). UWe look up the necessary
percentile in Table 5.5 (at the 1% level) with vl = 40 and V2 = 10 to obtain

4.17. We then compute the F statistic from (5.43) as
2
F = (6.0/3.2)° = 3.52

and since F is less than 4.17 we would accept the null hypothesis (i.e. that

=~ H% -
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the two samples come from populations with the same variance) at the 2% lev

PaL&A Cross- UCL

5.4.2.2 Examples of variance ratio tests

(i) Unit variance

Probably the most important application of the variance ratio test is
the testing of the proximity to unity of the unit variance computed

from
1 7 = (@W0)/(n - m) (5.45)

after a least squares position-fix computation. Notice that the

f ‘notation in (5.45) has been deliberately changed from (4.25) with s,

(Greek and Roman letters for population and sample statistics

’ replacing g, - This is to conform with the notation of this section

! respectively). The test is set up as follows (note s, is our estimate
}

|

of UD)
H:io? = 1 (5.46)
0 o
| H:ol # 1 (5.47)
{ ‘ A - D L]

and F is computed as in either (a) or (b) below.

?if. (a) 1If s, >1

? 2
F o= s, /1= s, (5.48)
Vl = N -=m, \)2 =
; (b) Ifs <1
! o v
74
i F = 1/sD ; (5.49)
iﬂ ¥ 5 \b.: n~=-m

As an example suppose (n - m) is 6 and 802 = 2.46, and we wish to set
a level of confidence of 90% (o = 0.10). The 0.05 (i.e. o/2) F table
| (Table 5.5) gives, for ¥, = 6 and V, = =, a percentile of 2.10. Hen®
computing F from (5.48) as 2.46 would lead to the rejection of thefﬂﬂ‘

hypothesis and the conclusion that our value for the unit variance wes |
significantly different from unity (with a 10% chance of making a £yPe,

error).
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(ii)

It was remarked in 4.2.4 that in some position-fixing problems (e.g. on

a moving vessel) the unit variance is best estimated by averaging a

Paul A Cross- UCL

large number of separately determined values. In such cases the above
test is carried out exactly as described but with Z(n - m) - 1 degrees

of freedom rather than (n - m).

It is interesting to note that when Vv,, or V., is ®, as is the case for

2 i)
unit variance testing, then the F statistic, or its reciprical, has a

xz distribution. Hence it is possible to use the X2 tables instead of
the F tables. For an example of how to do this see Mikhail and Gracie

(1981, 219-220).

It should be mentioned that if the null hypothesis is rejected, i.e.
if it is decided that cD is significantly different from unity, there
are two possible interpretations (assuming that there are no gross

errors). The first, discussed in detail in 4.2.4, is that the

assigned a priori covariance matrix needs to be multiplied by snz, and
the second is that the model used for the least squares computation is
incorrect or incomplete. For instance, if a scale error exists in a
distance measuring system, and it is not modelled, unexpectedly large
residuals would arise, mainly in the corresponding distance equations
(note that this would only occur if there was some other scale input
into the system, e.g. via more than one fixed point). It is usually
very difficult to choose between the two interpretations. Obviously if

we were absolutely sure of our a priori variances we could deduce an

incomplete model and vice versa but such confidence rarely exists in

practice.

Comparison of instrument or observer performance

To find out whether or not there is any significant difference betuween
the performance of various observers or instruments the F test is
applied exactly as in the example in 5.4.2.1. If we merely wish to
determine whether or not their performance is different we use a two-
sided test but if we wish to test whether or not one instrument or
observer is better than another we use a one-sided test. The sample
variances may come either from repeated measurements or from the

results of a least sguares computation (via the covariance matrix Cﬁ)'
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(iii) Test of observing conditions

If we have observed under certain conditions and later repeated the
measurements (or made similar measurements) under different conditions,
we can use the F test to determine whether or not the change in
conditions has significantly affected the precision of the measurements,

The procedure is exactly as in the example in 5.4.2.1.

For example, when carrying out the retriangulation of Great Britain the
Ordnance Survey made most of their angle measurements in East Anglia on
towers because of the very flat ground and it is obviously relevent
(e.g. for assigning Bj in a least sqguares compuatiun) to guestion
whether or not using towers significantly degraded the precision of

angle measurement. The tables of triangle misclosures in Ordnance

Survey (1967) give the data needed to answer this gquestion by means of

the F test.

5.8.3 Comparison of means

o o Between two samples

Suppose we measure a distance many times with one instrument and then repeat

the process with another and hence determine two mean distances, ;l and §2,

from the first and second instruments respectively. UWe may wish to knouw

whether or not the difference between the two means is significant, i.e.
whether or not one of the instruments produces a significantly different

If so we would conclude that there was some kind

measurement to the other.
Alternatiuﬂ’

of systematic error in one (or perhaps both) of the instruments.

we may have carried out the two sets of measurements at different epochs wi%l
’ |

well calibrated instruments and a significant difference could now be

interpreted as a change in the distance (crustal movement). We can set up @

test for the above as follows: let My and Ry be the population means

estimated by §1 and ;2; then we have the two-sided test

H = =2
I
|

: < I
B
where the bracketed alternatives relate to a one-sided test. g
|
If s. and s, are the two sample standard errors and ny and n, the number of |

1 2 il
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measurements in each sample it can be shown, e.g. in Mood and Graybill (1963),

thatvthe statistic

L
2

t = (% - 22)/(52(1/nl + 1/n,)) (5.52)

will have a t distribution with v degrees of freedom where

and
s = (slz(n1 -1) + szz(n2 = 1YY /%

The procedure then is to select o, compute t from (5.52) and look up the
relevant percentile in Table 5.4. Then, if t is greater than the percentile

we reject the null hypothesis and otherwise we accept it.
For example

146,214 , s 0.011 , n, = B8

bl
I

and

0.006 n

146.206 " y By =13

2 # B

I

x

]
I

then v = 18 and, if we choose to perform a two-sided test with o = 0.10, we
look up the percentile in Table 5.4 and obtain a value of 1.734. t computed
from (5.47) is 2.109 so we reject the null hypothesis at the 10% level of
significance (10% chance of a type 1 error) and conclude that the difference
between El and §2 is significant.

5.4.3.2 Between one sample and a known value

Sometimes we may wish to compare a mean not with another mean but with a knouwn
value, for instance when calibrating a distance measuring device over a known
distance or testing a navigation system by repeatedly fixing a known "
stationary point. In these circumstances we proceed exactly as in 5.4.3.1

but the test statistic (5.47) becomes
- &
t = (x - p)n?/s (5.53)

where X is the mean from n measurements and s its standard error. p is the
known value of the quantity (i.e. the population mean) and the t tables are

used with v = n - 1.

Notice that (5.52) can be written in the form

- B -
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E = (; - p.)/s; (5.54)

where g & s/n% is the standard error of the mean x. In this form it can be
used to test the significance of certain results from a least squares
computation. For instance, when we have included non-positicnal unknowns in
the parameters of a least squares computation we may wish to question whether
or not the guantities they are modelling actually exist (i.e. whether or not
there really was any need to model them in the first place). UWe can proceed

as follouws.
|

Let p be the least sguares estimate of a parameter with true value p. Ue haugf

|
|
then, if Sp is the standard error of p (obtained by taking the square root ofi
the relevant diagonal element of BQ), (5.54) becomes I
I
f

t = (p -D)/sp = p/sp (5.55)

and the test is carried out exactly as in 5.4.3.1 with the number of degrees
of freedom given by v - 1, where Vv is the number of observation equations

containing the parameter.

5.4.4 Goodness of fit

Throughout this discussion of statistical testing we have assumed that the
underlying pdf of our observational errors is normal. Although (as discussed
in 5.2.3) there are good reasons for doing this we may nevertheless wish to
test this assumption. For example, we may suspect that some non-random

influence is interfering in some way with our measurement process. Hence we

need a procedure for testing the "distribution" of our data.

Although the goodness of fit test to be described can in fact be used to test
the goodness of fit to any distribution, this section is directed specificallf
at the normal distribution since, in practical position-fixing, we are reall

only interested in this distribution. Hence we formulate the test as follou®

H .

o xl, X <ees X 3TE normally distributed with mean X and variance s

2’
!

HA: X7 Xp3 eeey X 2TE not normally distributed with mean X and variance ®'|

|

L

o BB =

Paul A Cross- UCL



where xl, XZ’ =esy X are the n variates in whose pdf we are interested and X

and 2 are computed in the usual way from these n variates.

The procedure is essentially to split the data into a number, say p, of equal
classes and to draw a histogram. If Di is the number of variates in the ith
class and E is the number expected in a normal distribution (cnmputed from

Table 5.2) 1t can be shown, e.g. Mood and Graybill (1963), that the statistic

Z((u By ) /E ) (5.56)
i=1
has the x2 distribution with p~3 degrees of freedom. Strictly speaking the
number of degrees of freedom is p-l-g where g is the number of statistics
drawn from the sample. In the above case g = 2: X and 52. If the mean and
standard error were known the null hypothesis would be
HU: X192 Xo3 eesy X are normally distributed with mean p and variance 02
so we would have g = 0 and there would be p — 1 degrees of freedom.

First we select a level of significance g and look up the relevant percentile
in the xz tables (Table 5.3). UWe then simply compare our value of xz from
(5.56) with this percentile and if the percentile is greater we accept the null

hypothesis; otherwise we reject it.

There may be a problem with the choice of class-width when dividing the sample
and with the cut-off at the two ends of the pdf. The latter arises because Ei
~becomes very small as the size of the variate increases. If readers are

particularly concerned with this they can consult Mann and Wald (1942).

The xz goodness of fit test is most commonly applied to sets of least sguares
residuals. For instance it is standard practice when computing a geodetic
satellite-Doppler fix to check the normality of the two hundred or so residuals
from each satellite pass. If it is decided that the residuals are not normally
distributed it would be usual to reject the complete pass from the position-fix
computation. Similarly, the residuals from a large triangulation network may
be checked in this way. Although it is unlikely that the network would be
rejected if the residuals failed the test it may uncover some non-random aspect

of the observing procedure or possibly a modelling error.

5.5 Concluding remarks

All the foregoing statistical tests are based on a level of confidence (1 - @)

= 1B =9

-
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which must be subjectively assigned by the individuals carrying them out.
Genefally tests are performed at the 95% and/or 99% level of confidence
(o = 0.05 or 0.01) and values of the statistic larger than the relevant
percentile are termed "significant" or "highly significant" respectively.
It is fairly common to consider that if the null hypothesis is accepted at
the significant level (95%) or rejected at the highly significant level (99%)
then there is no need to guestion the data further, whereas in between
(rejection at 95% but not at 99%) it would be usual to look for some other

evidence upon which to base a decision.

It cannot be emphasised too strongly that we can never be absolutely certain
of anything as a result of a statistical test. The level of confidence
cannot be set too close to 100% as the probability of type 2 errors would
become unacceptable. Hence we should view statistical testing simply as a
means (albeit a very valuable one) of procuring evidence, which, along with
other evidence, can help the process of making decisions based on the

observed data (and on information computed from them, e.q. positions).
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-0 z
z 0 1 2 3 4 5 6 7 8 9
.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
1 .5398  .5438 .5478 .5517 .5557 .5596 .5636 .5675 5714 5753
2 .5793 (5832 (5871 .5910 .594B .5987 .6026 .6064 .6103 .6141
3 6179 L6217 6255 .6293 6331 .6368 .6406 .6443 6480 6517
4 6554 6591 .6628  .6664 .6700 .6736 .6772 .6808 .6844 .6879
5 .6915 .6950 .6985 .7019 7054 .7088 .7123 7157  .7190 L7224
6 7257 7291 .7324 (7357 (7389 7422 .7454 7486  .1517 .7549
7 7580 .7611 (7642 7673 7703 7734 7764 .7794 .7823 .7852
.8 .78B1 7910  .7939 7967 .7995  .8023 .805) 8078  .8106 8133
.9 .RI59 BIR& B212  B238 .B264 . B289 .831§ 8340 .8365 .8389
1.6 8413 8438 8461 .8485 .BS08 .8531 .8554 .8577 .8599 .8621
¥ 86> B66S 4686 .870B  .B72¢ 8749 .B770 .8790  .8810 .8830
1. 884t "Zp9  BBBE  .BGO7  .B925  .B944 8962 .B980  .B997 9015
1.3 9032 9048 9066 9082 .9099 9115 .9131 9147 9162 9177
1.4 2192 9207 .9222 9236 .9251 .9265 9278 .9292 .9306 9319
1.7 .9332 9345 .9357 9370 .9382 .9394 9406 .9418 .9430 .9441
1.6 .5435Z .9463 .9474 9484 9495 9505 .9515 .9525 .9535 9545
1.7 .9554 9564 9573 .9582 .9591 .9599 .960B .9616 .9625 .9633
1.8 .9641 9648 .9656 9664 9671 .9678 .9686 9693  .9700 9706
1.9 9713 9719 9726 .9732 9738 .9744 9750 .9756 .9762 9767
20 .9772 9778 9783 9788 .9793 9798 9803 .9805 .9B12 9817
2.1 982! 9826 9830 .9B34 . 9B3B 9842 9846 9850 .9B54 L9857
2.2 .9B6! 9864 9868 .9871 9874 9878 .9881 .O8B84  .0BB7 .9890
2.3 9893 .3896 9898 .9901 .9904 .9%06 .9909 .9911 9913 .9916
2,4 9918 Q920 .9922 .,9925 .9927 9920 093] .9932 .9934 .9936
2.5 .9938 2940 eci 2943 9945 9946 .9948 9949  .995] L9952
26 997 9955 6956 9957 .9959 9960 .9961 .9962 9963 .9964
2.7 .9%65 .9¢66 ,95G7  .G568 9969 9970 9971 9972 9973 .9974
2.8 .9974 0975 9976 .9977 9977 .9978 .9979 .9979  .9980 L9981
2.9 .9981 9982 .9982 9983 9984 9984 9985 .9985 .99B¢ .9986
3. 9987 9990 .9993 .9995 .9997 9998 .9998 .9999  .9999 1.0000
Table 5.2 Area under the normal curve

Source: Mikhail and Gracie (1981, 326)
where it is .reproduced from Introduction

to Probability and Statistics by B W Lindgren
and G W McElrath (Macmillan, New York, 19639)

Reproduced by permission of the publishers
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2
\ 3B
3\ }
P

Degrees of 1 b 80 25 99 98-9
Jreedom (v)

1 0-0%157  0-00393 2v1 3-84 663 10-83

2 0-0201 0-103 4-61 5-99 9-21 13-81

3 0-115 0-352 6-25 781 11-34 16-27

4 0-287 0-711 7-78 9-49 13-28 18-47

5 0-664 1:16 9-24 11-07 15-08 20-62

] 0872 1-64 10-684 12.50 16-81 22-48

7 1-24 2-17 12-02 14-07 18-48 24-32

8 1-65 2-73 13-36 15-51 20-09 26-12

9 2-00 3-33 14-68 16-92 21-67 27-88
10 2-66 3-94 15-99 18-31 23-21 29-59
11 3-05 4-57 17-28 18-68 24.73 31-26
12 3-57 523 18-55 21-03 26-22 32-91
14 4:66 6-67 21-06 23-68 29-14 36-12
1e 681 ©17-96 23-54 26-30 32:00 39-25
18 T-01 9-39 25-99 28-87 34-81 42-31
20 8-26 10-85 28-41 31-41 37-57 45-31
22 9.54 12-34 30-81 33-92 40-29 48-27
24 10-86 13-85 33-20 36-42 42-98 51-18
26 15-20 15-38 35-56 38-89 45-64 54-05
28 13-56 16-93 37-92 41-34 48-28 56-89
30 14-95 18-49 40-26 43-77 50-89 59-70

g 5 Z , "

.Table 5.3 Percentiles of the ¥~ distribution "

Source: Wetherill G B 1982 Elementary Statistical
Methods 3rd edition Chapman and Hall London
356 pp page 327

Reproduced by permission of the publishers

| - 92 -
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-
o i
= ||
@
o i
O 138
< | i
O5¢ 0S¢ E} ‘ ,‘i
H:
Distribution of t -1 0 t l |
Degrees of Probability « '
Jfreedom -M;.
v 0.10 0.05 0.01 0.001 i
11l
i
1 6.314 12.706 63.657 636.619 i
2 2.920 4303 9.925 31.598 I '
3 2.353 3.182 5.841 12.941 i
4 2.132 2776 4.604 8.610 i
5 2.015 2571 4032 6.859 ilﬂ
(i
6 1.943 2447 3.707 5.959 | i*‘ti:,
7 1.895 2.365 3.499 5,405 | [
8 1.860 2,306 3355 5.041 LI
9 1.833 2262 1250 4781 (i
10 1812 2228 3.169 4.587 il
i1 1.796 2201 3106 4437 (i
12 1.782 2.179 3.055 4318 lL
13 1771 2.160 3.012 4221 ‘EL
14 1.761 2.145 2977 4.140 | (i
15 1.753 2.131 2,947 4.073 I ]
16 1.746 2120 2921 4.015 i
17 1.740 2110 2.898 3.965 |
18 1.734 2.101 2878 3.922 o
19 1.729 2.093 2.861 3.883 i
20 1.725 2086 2.845 3,850 | il
21 1721 2.080 2831 3.819 P
2 1717 2074 2.819 3.792 [l
23 1.714 2.069 2.807 3.767 :
24 1711 2064 2.797 3.745
25 1.708 2.060 2787 3725 , |
I
26 1706 2056 2779 3707 al
27 1.703 2,052 2771 3.690 I
28 1.701 2.048 2763 3.674
29 1.699 2045 2,756 3.659 "
30 1.697 2.042 2750 3.646 '
40 1.684 2.021 2.704 3.551
60 1.671 2.000 2.660 3.460
120 1.658 1.980 2.617 3373
© 1.645 1.960 2576 3.291
|
i
¥
Table 5.4 Percentiles of the t distribution

Source: Kennedy and Neville (1976, 457)
where it is taken from Table III, page 46 of
Statistical Tables for Biological, Agricultural

and Medical Research by Fisher and Yates

(6th edition, Longman, London: previously
published by Dliver and Boyd, Edinburgh)

Reproduced by permission of the authors and
publishers
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P(F)

5% level of significance o - 3
NY o, 2 3 4 s 6 7 8 9 0 12 15 w 4 1 4 6 im
va
1 161.45 199.50 215.71 224.58 230.16 233.99 236,77 238.88 240.54 241.88 241.91 245.95 248.01 249.05 250.09 251.14 252.20 253.25 254.32
26 1851 1900 19.16 1925 19.30 19.33 1935 19.37 19.38 1940 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19,50
31013 955 928 912 901 894 88 885 B8l 879 874 870 866 B64 B62 859 857 855 853
4 771 694 659 639 626 616 609 604 600 596 591 5.8 580 577 575 572 S69 5.66 5.6
5 661 579 541 519 505 495 4885 482 477 474 468 462 456 453 450 446 443 440 436
6 599 S04 476 453 439 428 421 415 410 406 400 394 387 384 381 377 374 370 367
7 559 474 435 412 397 387 379 373 368 364 3.57 351 344 34l 338 334 330 327 323
B 532 446 407 384 369 3.58 350 344 339 335 328 322 315 312 308 304 301 297 293
9 512 426 386 363 348 337 329 323 318 314 307 301 294 290 2.8 283 279 275 271
10 49 410 371 348 333 322 314 307 302 298 291 284 271 274 270 2.66 262 258 254
1L 484 398 359 336 320 3.09 301 295 290 285 279 272 265 261 2.57 253 249 245 240
12 475 389, 349 326 311 100 291 285 280 275 269 262 254 251 247 243 238 234 230
13 467 381 34l 308 303 292 28 277 271 267 260 2.53 246 2.42 238 234 230 225 221
14 460 374 334 31l 296 285 276 270 265 260 253 246 239 235 231 227 222 218 2.3
15 454 368 329 306 290 279 271 2.64 2.59 2.54 248 240 233 229 225 220 206 241 207
16 449 363 324 301 285 274 266 259 254 249 242 235 228 224 219 215 211 206 201
17 445 359 320 296 281 270 261 2,55 249 245 238 231 223 219 245 210 206 200 196
i8 441 355 316 293 277 266 258 251 246 241 234 227 219 215 211 206 202 197 192
19 438 352 313 290 274 263 254 248 242 238 231 223 206 211 207 203 198 193 1.88
20 435 349 310 287 271 260 251 245 239 235 228 220 212 208 204 199 195 190 1.84
21 432 347 307 284 268 257 249 242 237 232 225 218 210 205 201 196 192 187 181
22 430 344 305 282 266 2.55 246 240 234 230 223 205 207 203 198 194 189 184 178
21 428 342 103 280 264 253 244 237 232 227 220 213 205 2.00 196 [91 1.86 181 1.76
24 426 340 301 278 262 251 242 236 230 225 218 211 203 198 194 189 184 179 173
25 424 339 299 276 2.60 249 240 234 228 224 216 209 201 196 192 187 182 177 L7
26 423 337 298 274 259 247 239 232 227 222 215 207 199 195 190 185 1.80 175 1.69
27 421 335 296 273 257 246 237 231 225 220 203 206 197 193 188 184 179 L73 167
28 420 334 295 271 236 245 236 229 224 2.9 2.2 204 196 190 187 1.82 L77 L7 165
29 418 333 293 270 255 243 235 228 222 218 210 203 194 (9 185 18 175 170 164
30 417 332 292 269 253 242 233 227 221 216 209 201 193 189 184 [79 174 168 1.62
40 408 323 284 261 245 234 225 218 212 208 200 192 184 179 L74 169 1.64 158 LS|
60 400 305 276 .53 37 225 217 210 204 199 192 184 175 170 165 1S9 151 147 1.39
120 392 307 268 245 225 2.8 209 202 196 191 183 175 166 161 155 150 143 135 1.25
© 384 300 260 237 221 210 201 194 188 ‘183 175 167 157 152 146 139 132 122 100
Table 5.5 Percentiles of the F distribution

Source: Kennedy and Neville (19?6,460-451) wher~
it # v ~d from Statistics Manual by E L Crow,
F A Davies and M W Maxfield (Dover, New York, 1960)

Reproduced by permission of the publishers
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1% 21 ~f 8lg “iir nce
y;’ \i 1 2 3 4 & 6 7 8 9 10 12 15 20 24 30 40 60 120 - ¢]

4,052.4 4,999.5 5,403.3 5,624.6 5,761.7 5,859.0 5,928.3 5,981.6 6,022.5 6,055.8 6,106.3 6,157.3 6,208.7 6,234.6 6,260.7 6.286.8 6,313.0 6,339.4 6,366.0
98,50 99.00 99.17 99.25 99.30 99.33 9936 99.37 9939 99.40 99.42 9943 9945 99.46 99.47 99.47 99.48 99.49 99.50
34,12 30.82 2946 28.71 28.24 2791 27.67 27.49 27.34 2723 27.05 26.87 26.69 26,60 26.50 26.4] 2632 25.22 26.12
21.20 18.00 16.69 1598 1552 1521 1498 1480 14.66 14.55 14,37 1420 14.02 13.93 1384 13.74 13.65 13.56 '3.46
16.26 13,27 12,06 11.39 1097 1067 10.46 1029 1016 1005 989 972 955 947 938 9.29 920 9.1 9.02

1
2
3
4
]
g 13.74 1092 978 9.5 B8.75  8.47
8
9
0

826 8.0 798 7.87 1.72 1.56 740 131 723 7.14  7.06 697 6.88
12,25 955 B45 785 746 7.19 699 6.84 672 6.62 647  6.31 6.6 607 599 591 582 574 5.65
11.26 B.65 7.59 7.01 6.6 637 618 6.0 591 581 567 552 536 528 520 512 503 495 486
10.56  8.02 699 642 606 580 5.6l 47 535 8526 N 496 481 473 465 457 448 440 4.3]
1 10,04  7.56 655 599 564 539 520 506 494 485 4.7] 456 441 433 425 417 408 4.00 391
11 9.65 7.21 622 567 532 507 489 474 463 454 440 425 410 402 394 3B6 378 369 360
12 9.33 693 595 541 506 4.82 464 450 439 430 416 401 386 378 370 362 354 345 336
13 9.07 670 574 521 486 462 444 430 49 410 396 3.82 366 359 351 343 334 325 117
1 8.86 651 556 504 470 446 428 414 403 394 380 3.66 3.51 343 335 X27 318 309 300
15 868 636 542 489 456 432 414 400 3.89 3.80 3.67 352 337 329 321 313 305 29 2.87
16 853 623 529 477 444 420 403 389 378 369 355 341 326 318 300 3.02 293 284 275
| 17 840 611 518 467 434 410 393 379 368 359 346 3.3 3.6 308 300 292 283 275 265
18 829 601 509 458 425 4.0 3.84 371 3.60  3.51 337 323 308 300 292 284 275 266 257
g 19 8.18 593 501 450 417 394 377 363 352 343 330 315 300 292 284 276 267 258 249
20 810 585 494 443 410 387 370 356 346 337 323 3.09 294 286 278 269 2.6] 252 242
1
21 8.02 578 487 437 404 3.8] 364 351 340 331 317 3.03, 288 280 272 264 255 246 236
22 7.95 572 482 431 399 376 159 345 335 326 302 298 283 275 267 258 250 240 231
23 7.88 566 476 426 394 371 354 341 330 321 3.07 293 278 270 262 2,54 245 235 226
24 7.82 561 472 422 390 367 - 350 336 326 3.7 303 289 274 266 2.58 249 240 331 2.2]
25 777 557 468 418 386 363 346 332 322 313 299 285 270 262 254 245 236 227 217
26 772 553 464 414 382 359 342 329 318 309 296 2.8 266 258 250 242 233 223 213
27 7.68 549 460 4.1] 378 356 339 326 315 306 293 278 263 255 247 238 229 220 210
28 764 545 457 407 375 353 336 323 312 3.03 290 275 260 252 244 235 226 217 2.06
29 760 542 454 404 373 350 333 320 309 3.00 287 273 257 249 241 233 223 214 203
30 7.56 539 451 402 370 347 330 17 307 298 284 270 255 247 239 Z.30 221 211 201
40 7.31 5.18 431 383  3.51 329 332 299 289 280 266 252 237 229 220 201 202 192 1.80
60 7.08 498 413 365 334 312 295 282 272 263 250 235 220 212 203 1.94 1.84  1.73  1.60
120 685 479 395 348 317 296 279 266 256 247 234 219 2.0} 195 1.86 176 1.66 1.53  1.38
[Ea] 6.63 461 378 332 3,02 280 2.64 2.5] 241 232 218 2.04 1.8 1L79 1L70 159 147 132 100

Table 5.5 (continuad)
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Some critical values of tau

Table 5.6




5. Justification of least sguares

—

In section 3 the least sguares solution was defined as the one which minimised

a specified quadratic form, viz,

uva = minimum (3.6)
where
-1
U = C‘e (3.7)

It is quite natural to ask the question: why use (3.6) and (3.7)? Why not use

some other function for example rather than least squares ((3.6) when W = I)

2

vy + VU, + ...+ v = minimum (6.1)
why not have least cubes
3 3 3 _—
Vit # Yyt + eew + v T = minimum (6.2)
or least product
UlUZUS e Un = minimum (6.3)

etc?

To justify the use of (3.6) and (3.7) we will now derive and analyse the
statistical properties of estimates computed by the least squares method and
it will be seen that, from a number of different statistical points of view,
the least sguares estimates can be described as the "best estimates™. To
avoid lengthy algebra, discussion will be limited to the special case of
observation equations but all results can be extended to the more general
combined least squares problem.

Each of the following sections 6.1 to 6.4 considers a particular statistical
property of 9, the least squares estimate of the parameters from an ¥
observation equations model. 6.5 includes a summary of all properties and of

the history of least squares, and some practical points are made in 6.6.

6.1 Unbiased estimate

To prove that R is unbiased it is necessary to show, from (4.10),that
E(R) = x (6.4)

We start with (2.22), the basic linearised mathematical model for the case of

observation eguations,

e 7 o=
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Ax = b+ v (2.22)

or
b = Ax - v (6.5)
= Ax + e (6.6)

where e is the vector of true errors (from (2.1) and (2.2)). Taking

expectations in (6.6) gives
E(b) = AE(x) + E(e) (6.7)

but obviously the expected value of the true errors is zero, E(e) = O; hence

we have

E(b) = AE(x) (6.8)
= Ax (for true values) (6.9)

Now, from (3.41),

2 = (AwA)Y taTws (3.41)
oo ER) = (A'wa) aTue(s) (6.10)

Substituting (6.9) in (6.10) gives
E(R) = (AwA)"tATuAx (6.11)
= X (6-12)

Which is the same as (6.4). Hence we can say that the least squares estimate
is unbiagsed, i.e. on average the least sguares solution is equal to the true

solution. It is worth noting that the above proof does not rely in any Way on
the contents of W, and so the least squares estimate is unbiased irrespective

of the choice of UW.

6.2 Minimum trace of the covariance matrix of the parameters

It is reasonable to say that the best estimate of a quantity is the one with
the minimum variance because, given the choice of two estimates, one with a
large variance and the other with a small variance, we would obviously choose

- the one with the smaller variance. Hence we would like to have some estimate

= 98 =~
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of x, say x!, for which the covariance matrix Cx' was smaller than the
covariance matrix for any other estimate. Since the words large and small do
not have a single meaning where matrices are concerned, we need to define some

property of CxI that we require to be minimum. In this section we will

minimise the trace of Cx,, i.e. we will seek an estimate for which the sum
(and hence the mean) of the variances of the parameters is a minimum. In 6.3

a different property of Ex' will be considered.

The argument here will be restricted to linear unbiased estimates, i.e.
x! = Qb (6.13)
If x' is unbiased
E(x') = x (6.14)
and, from (6.13),
E(x') = QE(b) (6.15)
Substituting (6.9) in (6.15) gives
E(x') = QAx (6.16)
and combining (6.14) and (6.16) leads to
GA = I {6.17)
Now applying (4.16) to (6.13) gives
c, = G Q' (6.18)
X b

Hence the problem is to find a llnear transformation, Q, which satlsfles (6.17)

whilst minimising the trace of QC Q , i.e. we require

Tr(QCbQT) = minimum (6.19)
Subject to
GA -1 = 0 (6.20)

We use Lagrange's method of undetermined multipliers given in (3.12) and write

the complete Lagrangian function using the trace notation

- 99 =
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3 = Tr(QBbQT) + T{Z(QA - I)K]

or
3 Tr(QCbQT) + 2 Te(GAK) = 2 Tr (IK) (6.21) I‘;
w
yhere K is @8 matrix of correlatives. To minimise we differentiate with respectl
to Q and equate to 2eT0» i.e. \
%% = 0 (6.22) \1‘
which leads to \
2QC, + 2 KTAT wip = B (6.23) \\
giving %
B, = uy (6.26) 1\
HL and
il
%'l g = - K'ale, (6.25)
' I‘al postmultiplying (6.25) by A gives
QA = AT, A (6.26)
and substituting (6.26) into (6.17) gives
T = -KTATCb'"]"A (6.27)
which re—arranges to
K = -(Ach"lA)'l (6.28)
gubstituting (6.28) into (6.25) gives
“LyTe = (6.29)

T, -1
q = (ACy A) TR Cy

from (6.13), the estimate of X which leads to @ covariance matrix of

g is

(Ach"lA)"lATc -3 (6.30)

Hence,

parametars with a minimum trac

x! b

The least sguares estimate from (3.41)is
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& = (A'um)*ATub (3.41)

and it is obvious from (6.30) and (3.41) that the least sgquares estimate is .
the minimum trace estimate so long as we put W = wal.
of least sguares actually puts W = Cz—l, but it is clear from (4.38) that for

The basic definition

the special case of observation equations Eb = C . Hence it has been proved

£
that the least squares process, as defined by (3.6) and (3.7), yields an
estimate with a covariance matrix that has a smaller trace (i.e. smaller sum

of variances) than any other linear unbiased estimate.

6.3 Minimum variance of derived guantities

In 4.4.3 the computation of the variances and covariances of a set of
quantities § derived from the least squares estimates of the parameters was
shown and it was explained that such variances and covariances were extremely
useful in practice as they are closely related to the probable use of the
parameters. Here we consider a single quantity { whose least squares estimate
is given by

§ = s'% (6.31)

where

|

T
S = |81 Spy eery S

2
and it will be shown that the variance of §, 0, is less than the variance,

0'2, of ¢! computed from any other linear unbiased estimate of x, x!'. UWhat

follows is an extension of the proof given in Sunter (1966) for the special

case of W = 1.

v

Let x1 x 4+ bx (6.32)

Il

then
T T T
' = s x' =58 X + 8 bx (6.33)

Alsa, if x! is a linear estimate of x we can write it in the form of a linear

transformation of b

x! = [((ATMA)_IAT + u)m] b (6.34)

- 101 -
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i.e. it is the least squares transformation of b

R [ﬁATwA)"lnTw] b (6.35)
plus an additional amount. Combining (6.34) and (6.35) gives

x! = X+ Ub (6.36)
which when substituted into (6.32) gives

§x = Uub | (6.37)

Substituting (6.37) in (6.33) results in

§' = s'%+ s'uub (6.38)
and putting

& = &6 (6.39)
gives

§ = %+ tlub (6.40)

Taking expectations yields

E(4') = s'ER) + t WE(b) (6.41)
Substituting (6.12) and (6.9) in (6.41) gives

E(¢?) = s x + t UAX (6.42)

but since §! is an unbiased estimate of § (because x! is defined as an .

unbiased estimate of x) we have
E(Yt) = ¢ (6.43)
which, on using (6.31) with true values, becomes
T
E(4') = s x (6.44)
Then it is evident from (6.42) and (6.44) that

tTWAx = O (6.45)

- 102 -
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p1so if (6.45) is to be true for all x we can deduce that

tTwA = 0 (6.46)

Paul A Cross- UCL

and

T
Awt = 0O (6.47)

We now substitute (6.35) into (6.40) to yield
§r = [sT(ATuJA)"lATw - tTnJ] b (6.48)
and applying (4.16) to (6.48) gives
0'2 = [éT(ATMA)*lATw + tTw] C, [gT(ATMA)'lATm + tTw]T (6.49) !;

Since, for observation equations, C, = C, = ™t (from (4.38)), multiplying

out (6.49) gives i

2

g = sT(ATuA)'lATww'lwA(ATmA)"ls & &7

witwa(aTua) s i

-1.T

-fsT(ATwA) ATww™ tue $ B

|
wu ™ twe (6.50) i

Using (6.46) and (6.47) we see that the middle two terms are zero giving
o? = sT(alua) s + tTut (6.51)

which, from (4.67), reduces to

ct2 o STCQS + tTmt (6.52)

Now applying (4.16) to (6.31) gives

82 = STCQS (6.53)

so from (6.52) and (6.53) we have

A2 T
ot? = %4 t'ue (6.54)
Now assuming W to be positive-definitive (which it will always be, because it
is obtained by inverting the positive-definite matrix Cg)’ tTNt must be a
2
positive number, irrespective of t, and it follows that O' must be greater

than 32.

Hence if we compute, say, a distance from the least squares estimates of some
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Paul A Cross- UCL

coordinates, then that distance will have a smaller variance than a similar
distance computed from any other linear unbiased estimate of the coordinates.
The general theorem that has been proved here is known as the Gauss-Markov
theorem and it represents the single most important justification for adopting

the least squares procedure.

6.4 Maximum likelihood

An estimate is said to be the maximum likelihood estimate when it maximises
the value of the probability density function of the observational errors. If
we assume that the true errors (and hence the true residuals) are from a

multivariate normal distribution, their pdf can be written as in (5.9) as

& = constant x exp {— i uTcﬁ_lu} (6.55)

T,
Clearly (6.55) will be maximised if v EL lu is minimised. Hence, so long as

the observational errors have a normal distribution, we can say that the least

sguares estimate is the maximum likelihood estimate.

The exact meaning of the term maximum likelihood is complex and its full
explanation is beyond the scope of this paper: interested readers are
recommended to study Moed and Graybill (1963, chapter 8) for a detailed
discussion of the matter or Thompson (1969, chapter 10) for a simpler, but les
rigorous, discussion. Here we merely mention that the term is almost

equivalent to "most probable" but it is applied to estimated parameters rather

than to the observed guantities.

6.5 Summary and historical background

It has been shown in 6.1 to 6.3 that, no matter what the pdf of the observatis
: 5
errors, in particular irrespective of whether or not they are normally distri-

buted, the least sguares estimate has the following two properties:

(i) it is unbiased

(ii) it has a minimum variance (in the sense that Tr(CQ) is a minimum and

that the variance of a derived quantity is a minimum).

As a result of these properties, the least squares estimate is often referredf

to as the BLUE or Best (because of minimum variance) Linear Unbiased Estimate

Also it has been shown, in 6.4, that if the observational errors are normally
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distributed than the least squares estimate has the additional property of

being the maximum likelihood estimate.

There seems to have been some confusion within the surveying profession as to°
the proper statistical justification of the least squares procedure,
especially with regard to whether or not observations need to be normally

distributed. For instance Rainsford (1957) states,

"Once the normal law of error has been accepted, all cother results, such as

the principle of least sguares ... follow logically from it".

And Gale (1965) states,

"The least sguares principle is derived from the normal distribution function

n

Although neither of these statements is wrong they are over-restrictive and
have been interpreted by many as implying that a normal pdf must exist before
least squares should be used. To help explain how this confusion arose, and
because it is interesting for its own sake, a brief history of the development

of least squares will now be given.

The first published description of the use of least squares was by lLegendre
(1806), who used the method for the orbit determination of comets. Three

years later Gauss (1809) wrote that "our principle (least squares with a
diagonal weight matrix) which we have made use of since 1795 has lately been
published by Legendre" and a bitter personal feud started. It is now generally
accepted that Gauss was the first to use least sguares. The first theoretical
analysis of the method was by Laplace (1812), who essentially showed that least
squares estimates were what we should call maximum likelihood estimates.
Actually Laplace used the term"™most probable'and justified least sguares so
long as the observations were independent (diagonal W) and normally distributed.
His proof basically involved maximising the probability (i.e. area under a

normal pdf) of estimates lying within certain limits.

A different approach was taken by Gauss (1821), who was the first to show the
minimum variance property of the least sguares solution (although his proof

was restricted to independent observations). Gauss was therefore the first to
justify the use of least squares without recourse to the normal distribution.
His work was largely ignored during the nineteenth century when Todhunter (1865),
Merriman (1877) and others gave the impression that Laplace was wholly

responsible for giving the method a statistical basis.

- 105 -
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In the early part of the twentieth century Markov, e.g. in Markov (1912),

wrote extensively on Gauss's ideas and drew attention to the importance of

his work. Although Markov added nothing new in this area we today refer to

the minimum variance property (in 6.3) as the Gauss-Markov theorem.

Aitken (1934), using matrix algebra notation, extended the Gauss-Markov

theorem to the case where W is a full matrix (i.e. correlated observations).

6.6

The practical argument

We have seen that there is a theoretical justification for the application of |

the least sgquares process to virtually any set of measurements (the only

assumptions implicit in the foregoing were that the pdf should be continuous

and W should be positive-definite, both of which will always be true in

practice). There are also a number of more practical reasons why surveyors

use least squares and it must be said that it is for these reasons that most

least squares computations are carried out, i.e. surveyors would probably use |

least squares even if it could not be justified from a statistical point of

view.

(1)

(ii)

{211)

(iv)

(v)

The method is extremely easy to apply because it yields a linear set

of normal equations (unlike, say, "least cubes").

It is unique, i.e. there is only one solution to a given problem. Some

of the so-called semi-rigorous methods (e.g. semi-graphic resection)

yield a large number of solutions depending on the subjective choice of |

the surveyor carrying out the computation.

It is, generally speaking, "unobjectionable": it is very difficult to
form an argument against least sguares and in favour of some other

procedure. "

The method leads to an easy guantitative assessment of guality, e.g.

via the covariance matrix CQ.

It is a general method that can be applied to any problem.

To counter these apparently overwhelming arguments, the following warnings

should be given.

(1)

|
|
Least squares does not give the true solution. On average (because ﬁf
the unbiased property) the least squares solution is the true solutio™

but for any individual problem there may be some other technigue that‘
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(ii)

(1ii)

will give (perhaps by chance) an answer closer to the truth. Of course,

we are very unlikely to know-this.

If either Cz or the basic model (2.3) do not truly reflect the physical
situation, none of the derived properties of the least squares estimate
will be valid. There are often considerable practical problems with

determining both of these.
Although the normal distribution is not required for the application of

least sguares, it is essential for the application of most of the

statistical tests described in section 5.
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7. Seguential and step-by-step methods

There are many practical problems for which it is convenient to divide a least
sqguares computation into parts. Tuwo classes of such problems can be identified

as follows:

(1) situations in which not all of the observed data is available at any

particular time and it is required to estimate all of the parameters
with a view to updating these estimates as new data becomes available

(ii) situations in which it is required to split the parameters into groups
and to estimate either only a limited number of parameters or different

groups of parameters at different times.

Methods for the two classes of problem are referred to as "sequential and
"step-by-step" respectively. Note that we require that the results from both
non-simultaneous approaches to be the same as would be obtained from a full
simultaneous least squares computation (as described in section 3). The reasan
for dividing the problem is purely one.of computational convenience (usually tg

reduce both the storage and execution time required for solution by a computer),

In this section details of one method for each of the two classes of problems
will be given. The approach adopted is to begin by quoting a number of
examples of problems in which the situation occurs and then to give a full
mathematical derivation, followed by the working formulae for the relevant
method. In the case of seguential methods there really is only one method,
called sequential least squares, and this will be given. There are, howsver,
several alternative step-by-step methods and the one chosen for inclusion here
is knouwn as the Helmert-Wolf method. Derivations will be restricted to the
special case of observation equations. Gagnon (1976) describes other non-

k2

simultaneous methods which fall into the classes identified above.

P.ak Seguential least sguares

7.1.1 Examples of applications

e8] Real time data acquisition There are a number of problems in which da¥

is acquired in real time and a continuous estimate of a number of stationary
parameters is required. Note that if new parameters are being "generated" bY
the new data we must use a step~by=step method and if the parameters are
changing with time we need to use a filtering technigue, e.g. Kalman

filtering as discussed in section 8. An example of a problem suitable for tHf
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sequential least squares approach is the fixing of a stationary oil rig by
continuous interrogation of a number of different navigation systems.

gii! Coordinate updates A national mapping organization, or any other body

concerned with the provision of coordinates, is, in general, continually

undertaking new measurements. Rather than carrying out a completely new least
squares computation involving all the original data, these organizations may
prefer sequential least squares, which allows an update of the coordinates
(and the estimates of their precision) by computing small “corrections" from

the new data.

giii) Design of‘positiun—fixes The computer simulation method of designing

position-fixes (described in 4.5.1) involves continuously altering a proposed
position-fixing configuration to search for the one which fulfils the design
criteria most economically. After each alteration a new covariance matrix C;
is required. The use of the seguential least sgquares method allows this to be
determined by a correction to the previous CQ and without a completely new

computation and inversion.

7.1.2 Derivation of the method

Suppose we have a vector of observations, £., from which we wish to estimate

l!
some parameters, x. We set up the linearised model in the form

A.x = b, + v £1.1)

and determine the least squares estimate of X, which we will call Ql’ from

(3.41) by

~ T -1, T
X, = (Al wlAl) A, Wby {7.2)
v
where ml = Cb _l. We find it convenient to write (7.2) as
i}
FaS s, l
X, = N, Ty (7.3)
where
T
Ny = AU A (7.4)
and
T
- 745
u; = A Wby (7.5)
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Also we have, from (4.67),

CA = N (7.6)

2
Now suppose that we have some additional observations £2 and we wish to obtaip

an estimate of x, which we will call §‘<2, from both £

follous.

and 32. We proceed as

1

Let the linearised model for the second set of observations be

Ajx = b, + v, {7 )
with a new weight matrix W, = C =
2 b2
Then combining (7.1) and (7.7) we obtain the complete model
Ax, = b+wv (7.8)
where
Al bl v
A = A ’ b = ’ Vv |
also we will have
W
1 0
W =
—U w2

Now, from (3.15), remembering that we are dealing with the special case df

observation equations, we write the least squares solution to (7.8) as

W - 0 0 0
N
-1 0 A k = b (7.9)
0 P L 0

2

Then, partitioning (7.9) further we obtain
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T

i ! | = ™ A~ ™ _]
w 0 ;-1 0,0 0, 1 0
| \
| A
0 NZ l 8] -1 | 0 u2 0
——————————————— '——— —— e - e, - e
| ] A 2
= o ;0 0 : Ay kp | = |8 {7.10)
i
A
0 -3 3 © o ' A
] P 2 k2 l:’2
———————— B T —}--- —— —— - e
I 0§ T A
0 D A I O X 8]
N T 21 | "8 [
which can be rearranged to
_ - - -
ul 0 -1 0 0 Ul 0
0 '+ - &
0 U2 I u2 0
1 0 o A O R b (7.11)
- 1 w | # . P
T T A
0 0 Al 0 F\2 x2 0
o A, O P
o - 2 LI 1

Now applying (3.21) to eliminate Gl in (7.11) gives

[ T A 7] ]
w2 0 0 -1 u2 r-U
i A
0 *Nl Al o kl bl
= (7:12)
b il A
0 Al 0 AZ x2 0
D N
_-—I 0 A2 9 Lkz_ 4 b2_ v
Similarly eliminating 32 in (7.12) gives
B . ]
" % T
,ul Al 0 kl bl
PRI A v % = |1 (7.13)
i} 2 2
w ok b
LD qu 2 i L 9 i b

Fal
and eliminating Kk, in (7.13), and using (7.4) and (7.5), yields
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T A s
Uy A2 - g j
= (7.14) ‘
A ) 1k b |
2 2 2 2
We now apply (3.21) directly to (7.14) to give
-1 =1, T\A =1

=(u, "+ AN, TRy Dk, = by = ANy Ty (7.185)
Substituting (7.3) in (7.15) and rearranging yields

N -1 -1 T,-1 A

ky = (Uy =+ AN, TA) T(AX) = b)) (7.16)
From (7.14) we can write

A TA

N x, + Ay k, = u) (7.17)
hence

A =1 TA

X, = N "(u, - A, kz) (7.18)
and substituting (7.3) and (7.16) in (7.18) gives

A A e T -1 -1 T,=-1 A +

X, = %Xy = NTTA, (m2 + AN, A, ) (Ale nz) (7.19)

which is the sequential least squares expression for the parameters. To
determine the residuals for the additional observations we return to (7.10)

from which we can write
WY -k = 0 (7.20)
giving

(7.21)

and substituting (7.16) in (7.21) gives

A -1, -1 -1 T.,-1 A
v, = W, (W o+ ANTTA )T (ALK, - by) (7.22)
To determine the covariance matrix C; we rearrange (7.19) as follouws
Z
A -1 -1 -1 T,-1 } A
X, = [1 =Ny R, (w2 + AN, A, ) A, | %y
=1 Ty =i -1 T,-1
3
+ N A, (u2 + AN TTA,) b, (7.23)
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ghich can be written

2, = [ wl|e)

where

g, = I-N ~14 T(w - & &N ~ky T)'lA

1 I "2 2 21 2 2

and

-1 -1, T,-1
a, = NTA, (W, T+ ANy Ay )

Now applying the propagation of error law, (4.16), to (7.24) gives

- % P o
ca = |Q Q] Ca 0 Q
X [ 1, 2 Xl i1
T
0 C Q
b
. 2-| -_2-4
5 -1 -1 : " ; :
putting W =C_ and N — C~ in (7.27) and multiplying out gives
2 b2 i b Xy
-1 T =1_T
C§2 = QN e+ Gl

Then substituting (7.25) and (7.26) in (7.28) uwith

-1 =1 T\-1
P = (m2 -+ Ale A2 )
gives
' =1l T -1 T -1
522 = (1 - N, A, PAZ)Nl (1 - A2 PAZNl )
-1, T., =1 -1
4 Nl AZ me PA2N1
which multiplies out to give
-1 -1 T -1 -1 T -1
CQZ — Nl - Nl Az PAle - Nl A2 FAle

1 =1, Tor =1 -1

1. 1 -
Ay PAN, T + Ny pu_~“PA_N

. T i
+ Nl A2 pAle

The last two terms of (7.31) combine to give

. T = W -1 -1
N, A, P(Ale R, * u, )PAle

But from (7.29) we see that (7.32) is equal to
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0
>
®
S
O
<
E
©
o
-1, T -1
Nl A2 PAle (7.33)
Hence the sum of the last three terms of (7.31) is zero and we can write,
using (7.6) and (7.29)
= | =1 =1 T,-1 -1
Cp = Cp = N 7HA, (U, 4 AN TR, ) Azﬁl (7.34)
2 i |
Note that, using (7.6), we can write
-1
T (7.35)

7.1.3 Summary of the sequential procedure

We start with a set of measurements ll and obtain our first least sguares
estimate of x (Ql) and its covariance matrix (CQ ) in the usual way using (7.3)
and (7.6); also we can estimate the residuals (Gl) from (3.43). If a new set
of measurements £2 becomes available we can obtain a new estimate of x and its

covariance matrix from both sets of measurements by using

A A A

X, = X+ &% (7.36)

Cr = Ca + A« (7.37)
x2 Xl X _

where 8% and AC; are given in (7.19) and (7.34). The residuals for the neu
observations are given by (7.22), or if required the residuals for the complet

set of observations £l and £2 can be obtained from

¥ = B.=5 (7.38)

Should a third set of measurements become available we can obtain 93 eto. frof

2

The general ferm of the equations, written in a way that indicates how the

%, etc. by using exactly the same set of formulae but putting the subscriptsjf

and 2 instead of 2 and 1 and so on for fourth, fifth ... sets of maasuremenﬁ-.

computations would be carried out in practice, is r
-1 7T
R, NI, A (7
-1 -1

8, = .40)

5 (U, + A.R,) (7
A A

_ - 1)

k; = Si(Aixi_l bi) (7.4
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A ~ A

s el F R, L (7.42)

o= W, (7.43)
1 i I =

Bk = N_‘l = Ba - R.S.R.T (7.44)
X. 1l X. 1 L (S &
Tl i-1

Notice that each computational cycle includes only one inversion, to get Si in
(7.4D0). No inversion is required to compute Ri in (7.39) because Nzil is

given by (7.44) from the previous cycle. The size of the matrix to be inverted
in (7.40) is the number of new observations. Hence it can be seen that the
method will be at its most efficient when only a few (compared with the number
of parameters) measurements are added during each cycle. If the number of neuw
measurements approaches the number of parameters it is more efficient to start
afresh and carry out a new simultaneous least squares computation in the usual
way. Mikhail (1976) and Forster (1980) include detailed discussions of the
efficiency of the application of the seguential least sgquares method and several

numerical examples of its use.

It should be noted that there may be situations in which it is required to
remove rather than add observations, e.g. when designing position-fixes or
after discovering a gross error amongst the latest observations to be added.

In such cases the procedure and formulae are exactly the same except for a
change of the signs in (7.40), (7.41), (7.42) and (7.44). Fipally, it is
remarked that a similar procedure can be derived for the combined case of least

squares.

T2 The Helmert-Wolf method

It was explained at the beginning of this section that the Helmert-Wolf method
can be used for problems where it is convenient to split the parameters into
two or more groups. 7.2.1 gives three examples of such problems whilst 7.2.2
is concerned with the Helmert-Wolf method itself. Further reference to the

examples is made in 7.2.2 and 7.2.3.

7.2.1 Example of applications

(i) Calibration of acoustic networks Suppose that there are a number of

acoustic beacons, A, B, C, ..., etc. as in Fig. 7.1 placed on the seabed and
that it is required to find their positions so that they may be used at a later

date to position ships in the area. A ship may be sailed through the area, as
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shoﬁn in Fig. 7.1, and at points 1, 2, 3, ..., etc. it may measure distances

to whichever beacons are within range and the problem would be to compute the

Figs 7.X

coordinates of points A, B, C, ..., etc. The coordinates of peints 1, 2, 3, ..,
etc. are unlikely to be needed (although as will be seen later they can be

determined if required).

Obviously one solution would be to write down one equation for each distance
and solve the problem simultaneously as if it were a geodetic network. The
difficulty with this is that there may be hundreds (or even thousands) of ship
positions and the least sguares computation would involve solving normal
equations of very large dimensions, possibly larger than could be handled F
conveniently by the available computer. It would clearly be advantageous to b
able to divide the parameters into two groups - ship positions and beacon

positions - and to be able to limit the solution to the beacon positions only.

Note that the problem as described here is often referred to as relative
calibration, as one of the beacons would have to be assigned arbitrary coordi-
nates and the result would consist of relative beacon positions. Absolute
calibration (i.e. determination of positions in a particular reference systmﬂ
could be performed by the same method if at some of the ship positions, 1, 2

3, ..., 8tc. in Fig. 7.1, measurements were made to points (e.g. shore statio®

or satellites) whose positions were known in the required reference system.

(§4) Satellite-Doppler positioning When fixing the position of a stational!

point using the satellite-Doppler method it is common practice to observe @
large number (say fifty) satellite passes. For each pass the observation

equations will contain a number of unknouns - three for the position of the
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point and a variable number for the pass (e.g. for orbit errors, refraction,
frequency offset and frequency drift). The number in the latter group depends
on the mathematical model used for the solution. For example, if we had ten
pass unknouwns (which would be different for every pass), then, for fifty passes,
we would have a system of 50 x 10 + 3 = 503 equations to solve if all the data

were treated simultaneously.

There are obvious advantages in dividing the parameters into two groups, pass

unknowns and position unknowns, as we often do not need to know the former.

Siii) Computation of national and continental networks

In modern geodesy it is fashionable to compute simultaneously very large
triangulation networks, e.g. the European network has recently been completed,
the North American is currently (1982) being computed and an African network
is at the early planning stage. There are several reasons why such networks
may not conveniently be handled in one simultaneous computation; some are

listed below.

(a) The set of equations may be too large to handle conventionally.

(b) Various countries may be reluctant to make their observations generally

available.
(c) Relative weights between areas of triangulation may be difficult to assess.

(d) There may be problems over the publication of coordinates, i.e. a

country may not wish others to know coordinates of its stations.

It will be seen that splitting the network into areas (countries or groups of
countries in the case of continental networks) and introducing two kinds of
position unknowns, those for points within the area and those for point% on the
boundaries (called internal and junction unknowns respectively), can overcome
all of the above difficulties. A central bureau is established to compute the

junction point coordinates and then each area can compute its own coordinates

independently.

T2 Derivation of the method

Suppose that we have r sets of independent observation eguations and that in
each set we divide the parameters into two groups which we call local and

common parameters. The common parameters, y, will appear in every set whereas
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the local parameters, X3 for the ith set of observations, appear only in that ®

one set. We could then partition the ith set of observation equations in the

form

i.e.

To explain this further we return to the three examples in 7.2.1.

(1)

(ii)

(131}

It is important to note the following two points.

(1)

(i1)

Now if we let Ui (= bedj be the weight matrix for the ith set of observation
and combine together all r sets of measurements we will have a block diagoﬂal

global weight matrix (because the sets are independent of each other).

Each set of observations is the group of distance measurements from one
ship position. The local parameters are the position of the ship and

the common parameters are the positions of the beacons.

Each set of observations is a single satellite pass, the pass unknouns

are the local parameters and the coordinates of the observer'!s position

are the common parameters.

Each set of observations is an area of triangulation, the interior point
positions are the local parameters and the junction point positions are

the common parameters.

The unknowns in each set of observations must be carefully arranged as
in (7.45), i.e. the common parameters must appear after the local

parameters in the complete vector of parameters.

The vector y contains all the common parameters, even though any one
set of measurements may only be concerned with a limited number of them
This point is made merely to ensure the rigour of the derivation to
follow. In practice it is only necessary to form sets of observation
equations using the common parameters with which those obseruatio;s ars
concerned. The missing parameters are merely filled with zeroes at the

appropriate stage. This will become clear in 7.2.3.
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and a global vector of residuals

\J:[U Y] ..\J]T
i "2 ¥ T

least sQUATeEs raquirement

making the
T T T T . e
v Wy = Vl mlul + u2 w2u2 F wam T Ur Nrur is a minimum
T
e.4 w
1. LVi v, = minimum (7.47)
i=1
substituting (7.46) in (7.47) gives
= T
- A B - = ini
§l(Aixi + B,y hi) wi( X4 + B,y bi) minimum
i=1l
and expanding gives
r
}i(x.Tﬂ.TW.R.X. + x.TA.TN.B.y - x.TA.Tu.b,
3 TE A Lk - W i
i=1l
T T T T T T
A =
vy By U A £V By By =¥ By Wy
= minimum (7+48)

i b_Tw.A.x. - b.Tm.B.y + b.wa.)
llll lll 1. 1

o differentials of (7.48) with respect to X
t to X.,
i

xi and y gives

For a minimum th

zero. Differentiating pirst with respec

to denote the least squares estimates of

T
Y; T ~

A Tu.A A
2, (2hy g i
)

’
. uBY - A W.b,) =
1 2 EH 4213 T X
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which simplifies to
T
El(A.Tw.A.Q, # i
i & X & i

1=1

T T

A
- A, .b. = 0 "
w,B.Y A 1) (7.49)

Similarly differentiating with respect to y and simplifying leads to

T
T A T A i
B,y - B. WU,b.) = ’
5:(81 WA X, + B W BY i Uy l) 0 (7.50)
i=1 e
(7.49) and (7.50) can be combined to give
r q T B 7
aTwA A luB. | |4 & N B,
T I X X L LI« ERg< 1 T B
24 = = 0 (5D
i=1 8. TW.A B,uB, | | B.W.b
ik @ & E I 1L = A W
L. - - < o .
Then applying (3.21) to (7.51) gives
T
Z;(B.TM.B. -8 WA (A wa)ytaTus )l
51 T MR & l 31313 I 2 L A X
i=1
7y
- V. Tub, -8 "waava ) Tub,) (7.52)
o X X A L kol & Ak . S
i=1

Hence we have derived a set of eguations which is in terms of ? only. We can

write (7.52) in the form

A
(Nl + Ny e+ Nr)y = dy + d, + Ay + eae + d_ (7.53)
or
where .
N, = B.'w.B. -8B WA (A wAa ) Tus
1 i X & (7 - [ < I T R 3 L L
d. = B, Wb, -8B, w.A (A Twa ) T,
X E 3 & 2 T I X E I L & &

The set of equations

N.Y = d. (7.55)
X 1

is sometimes referred to as the "reduced normal equations™ for the ith

observation set. This is because they are obtained simply by independently
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can

fofming the normal equations for the ith observation set ((7.51) without the
summation sign) ana eliminating the local parameters, Qi’ according to the
procedure of (3.21). Hence the procedure is to compute the reduced normal
equations for each set of measurements and then simply to add them together,

as in (7.53), to form a set of equations, (7.54), that can be solved for vy,

the common parameters. If the values of any of the local parameters are
required we return to the normal equations for the relevant set of observations

and obtain ;i using (3.20), i.e.

T

A A
X wiaiy) (7.56)

o= (A wA, )R Tub, - A,
7 1 i L b I i X i 8

Note that it is at the summation stage, (7.53), that we need to ensure that
all matrices Ni have the same dimensions. If some of the common parameters do
not appear in any particular set of measurements, the Ni for that set will have
to be filled with zeroes in the appropriate places. This is not problematical,
although great care must be taken when carrying out, say, a continental
adjustment to ensure that all countries adopt the same code numbers for the

common parameters.

To obtain the least squares estimates of the residuals we return to each of
the i sets of measurements, solve for the local parameters using (7.56), and

use (7.46) in the following form

A A A
v, = AX +BJY-b, {ras7)

In some problems the local parameters and residuals may not be required but
it may be desired to compute the variance factor from (4.25), which requires
computation of the global quadratic form GTNG. It is shown in Gagnon (1976,45)
that this can be determined without explicitly computing the residuals by
using "
r
Cud = §las z:(biTwibi . biTmiAi(AiTWiAi)—lAiTwibi) (7.58)
f=1

where d is given in (7.54).

The covariance matrix of the common parameters, D§, is obtained in the usual

way

Ca = N (7.59)

where N is defined in (7.54). To determine the covariance matrix of the local
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parameters of a particular set of observations we return to the normal

equétions for that set ((7.51) without the summation sign) and write them in

the form
N Q p
x Xy - - (7.60)
T A
Xy Ny Y P2
where
N = A.TM.A
X i EN A
= A.TM.B
Xy i e
N = B.TW‘B
y i o
T
P, = Ai mibl
T
p, = Bi uibl
» A
X = X,
e 5
The suffix i will be dropped from now on to increase clarity.
Now applying (3.20) to (7.60) gives
A =1 A
X = NX (pl == NXYY)
which expands to
A =1 -1 A
X = NX pl - NX nyy
and substituting for Py gives
o
A =17 =1 A
X = N TAUD - NN Y (7.61)

then, applying (4.16) to (7.61) and assuming b and y to be independent

(which is not true but is a reasonable simplification)

= P_auLACLussQfL

By, = N “LpTucuan ™2 +n "IN caw Tt
X X b X X Xy ¥y xy X
but W = C ~4 and N = ATwA
b X
B = N5 8.7 o Ty (7.62)
X X X Xy ¥ Xy X
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which is the expression for the covariance matrix of a set of local parameters

Paul A Cross- UCL

Uriting it in full for the ith set of local parameters we have the approximate
formula

Ca = (A.Tw.A.)‘l[I + A.TM.B.CAB.TN.A.(A.TM.A.)_l] (7.63)
X - s M e s

T2y Summary of the Helmert-Wolf procedure

The Helmert-Wolf method can be summarised in the following steps.

(i) For each set of observations (measurements at one ship position, one
satellite pass and one area of triangulation in the three examples in
7.2.1) the normal equations are independently formed, taking care to
put the common parameters (beacon, receiver and junction point positions
in the three examples) below the local parameters (ship position, pass

unknowns and interior point coordinates) in the vector of parameters.

{14) Each set of normal equations is independently reduced using the
strategy of (3.21) to form reduced normal equations in terms of the

common parameters only.

(iii) These reduced normal equations are simply added together and solved to

give the least squares estimates of the common parameters.

(iv) If the least squares estimates of the local parameters are required it
is necessary to return to the independent sets of normal equations
(stage (i)) and use (3.20). If the residuals are required they can
be obtained from (7.57) but if an estimate of only the unit variance

is required (7.58) can be used.

(v) The covariance matrix of the common parameters is obtained from (7.59)
and, if required, the approximate covariance matrices of the local

parameters are obtained from (7.63).

The following points are worth noting.

(i) The procedure is exactly equivalent to a simultaneous least sguares

solution (7.2.2 proves this).

(ii) It has special advantages when the local parameters are not required,
2.9. in the first example of 7.2.1 where a very small minicomputer
could easily cope with what is equivalent to the simultaneous

solution of many hundred simultaneous equations.
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(1ii) It has special advantages, in terms of the organization of the work,

for the computation of continental networks; see Gagnon (1576).

(iv) If required the process can be split into a number of levels, i.e.
the common parameters could themselves be divided. This is rather
complex and only really applicable to exceptionally large problems.
Isner (1978) and Dillinger (1978) describe the application of this

strateqy to the computation of the North American horizontal network.

T=5 A note on linearisation

It is important to point out that both sequential and step-by-step methods ars
usually only worthwhile when there are no significant linearisation errors,

i.e. when the approximate values for the parameters, xD,are very close to the
final estimates. Obviously many of the advantages of the method would be lost

if it were necessary to iterate.

7.4 Terminoclogy

It should be realised that other authors use the phrase "step-by-step" to
refer to different problems. Vani¥ek and Krakiwsky (1986) call Kalman
Filtering and Sequential Least Sguares "step-by-step" methods while for

Gagnon (1976) anything that is not a simultaneous solution is a "step-by-step'

solution.

- 124 -

Paul A Cross- UCL

|
F




ep

re

ist

1

8. Filtering, smoothing and prediction

e .

Filtering, smoothing and prediction technigues are used for problems in which
the parameters being estimated by the least squares process vary with time.
One obvious example is navigation (at sea, on land or in space), where we try
to estimate the position of a vehicle as it moves. The methods are, however,
valid for any system in which the parameters have temporal variations even
though there may be no movement. For instance, a stationary inertial
surveying system has time varying system errors (gyro drift especially) which
often appear as parameters in a least sguares computation. Before any

mathematical details are given the basic terminology will be explained by means

of an example of navigation at sea.

Suppose we have a vessel moving so that at times tl, t2, vy ti it is at

positions 1, 2, ..., i as in Fig. B.1.

Fig.B.1

Let us say that ti is the present and tj is the time at which we want to
estimate the position of the ship using all the information available up to ti

(the present). UWe can make the following definitions: i

if t, = tj we are filtering

O tj we are smoothing

&, R tj we are predicting.

To make these definitions clearer, imagine a ship at sea carrying out a
seismic survey. It would be common to travel in straight lines, taking
seismic measurements at specified linear intervals, whilst continuously

interrogating some kind of shore-based navigation system. The process of
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computing the ship's position at any instant in order to plot the real-time
position on a chart would be filtering. The computation of the time at which
the ship is expected to be at the correct position to make a seismic

measurement would be prediction and the subsequent, possibly office-based,

estimation of where the ship actually was when the measurements were taken
would be smoothing.

There is a number of different mathematical strategies for filtering,
smoothing and prediction. In this section a widely used method, called Kalmap
filtering, will be derived and discussed. It is important to note that despite
its name the set of equations known as the Kalman filter can be used for all
three activities, i.e. filtering, smoothing and prediction. Before the Kalmap

filter.is introduced more definitions are required.

Returning to Fig. 8.1, suppose that El’ §2, ceey ;i are the true values of the

parameters at pointes 1, 2, ..., i and that zl, Lz, ¥ SR £i are the correspondin|

vectors of measured gquantities. For each point a functional model can be

written as follows

Fl(§l, ' El) = 0 at point 1

Xy 4 = i B.1
FZ(XQ’ £2) 0 at point 2 (B.1)
eto.

4cL

o

which may be linearised (as in 2.2) to

Alxl + Elul - bl = 0

A%y + Couy = by = 0 (8.2)

etc.

Note that Fl, F2, F3,

may represent a satellite-Doppler fix, point 2 may be a shore-base navigatiof

etc. may be entirely different, for instance point 1

system fix, point 3 may be an acoustic fix, etc. In practice, however, it is
more likely that most points will be fixed by the same system with only
occasional measurements made with other systems. Also note that in this
example x may contain a number of parameters besides positions: typicallys
velocity and heading may be included as well as scale and refraction unknoun®

Some unknowns, e.g. scale and refraction, may best be considered as constan®
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over short periods of time, i.e. not all of the parameters have to be time

varying.
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(8.1) and (8.2) are usually referred to as primary models; they relate the

parameters to the measurements and have associated covariance matrices which

are used to determine the weight matrices ul, Uz, & A Ui in the usual way.

We further suppose that we have some kind of mathematical model which relates
the parameters at point 2 to the parameters at point 1, i.e. we have some
additional source of information as to how x varies with time. Such a model

is known as the secondary model and can be written as

or, more generally,
Fosy 5 g ptipolygotyd = B (6.4)
The secondary model (8.3) can be linearised to

Xy = Mx) +y (8.5)

where y represents the unknown errors in the secondary model, i.e. the
inability of (8.3) to predict correctly the temporal changes in the parameters.
Associated with (8.5) is a covariance matrix Cy which reflects the precision
of the secondary model. The inverse of Cy is the weight matrix of the

secondary model
W = C (8.56)

For most practical problems, and indeed in the classical approach to

filtering theory, it is convenient to consider the vector y as being given by
v

y = Tg (8.7)

where g is the vector of the guantities which cause the secondary model to be
incorrect and T is a coefficient matrix chosen so that the product Tg
represents the effect of these guantities on the parameters. Notice that,

in general this transformation matrix T will not be a square matrix as the
number of error sources in the secondary model is not necessarily equal to
the number of parameters. Usually g will be assumed to be a vector of random

guantities with a zero mean and covariance matrix Cg. Then, by use of (4.16),
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the weight matrix of the secondary model becomes

=1 G
W = C = (TG T B.8

In practice the secondary model will be determined from the known historical,
or theoretically expected, changes in the parameters and the vector g will be
some physical effect which is known to exist but is not modelled. For
instance when navigating at sea the secondary model may describe straight line
motion (constant velocity) and all its errors would be due to vehicle
accelerations; hence g would contain these unknown accelerations (which could

reasonably be described in practice as being random).

In the jargon of filtering techniques the vector of parameters x is called the

state vector and the matrix M is known as the transition matrix. Vector g is

known as the driving noise or more generally as the forcing function. Notice
that My, T and U

M will all usually be functions of time.

8.1 The Kalman filter equations

The filter which we now call the Kalman filter was first derived in Kalman
(1960) as a method for use in electrical control systems. It is now a
standard method within the general mathematical subject area known as
sequential smoothing and prediction, and most books on this topic, e.g.
Morrison (1969), devote considerable space to the technique. Surveyors
generally find it difficult to read publications such as these as the
notation is very different to that to which they are accustomed. Alsa, the
starting point for the "classical" derivations is usually the maximum

likelihood requirement (see 6.4) which may be less familiar than least sguares

Krakiwsky (1975) has, however, shown that the Kalman filter can be derived frof
the standard least squares reguirement and it is this derivation that will be
given here. Note that in the case of observations with a normal pdf the
least squares estimate is the same as the maximum likelihood estimate.
Krakiwsky (1975) gives the derivation for the combined case of least squares
but here only the special case of observation equations will be considered.
This is simply to restrict the length (and apparent complexity) of the
formulae — the procedure is identical for both cases. Readers who require

the formulae for the combined case are advised to consult Krakiwsky (IQTSL

" Consider the two times t1 and t2. At tl we have the primary model
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1 be

Ajx; = b + v (8.9)

and at time t2 another primary model

AX, = by +v (8.10)

Also we have the secondary model
0, = Mx, + (8.11)

The filtering, smoothing and prediction problems are to find least squares

estimates for x,, X, and x., respectively. Hence we wish to minimise

2 14 3

v Tw Vv, + Vv Tw v, + mi

1 Wy F Yy Ug¥s m’

subject to constraints (8.9), (8.10) and (8.11). Following Lagrange's method

of undetermined multipliers described by (3.11) we write down the function

i; T 0 E
3 wlul + v, UV, + Y Mmy + 2k (Alxl - bl - ul)

Tt g
b, - v2) + 2K, (x2 ~ W, ~ y) (8.12)

i
+ 2k, (Azx2 = By

To minimise ¢ we differentiate with respect to all five variables

. A _ AT '\T’_
(1) b§/bul = 2v, W, -2k, =0
A
ulﬁl -k, =0 (8.13)
= A AT AT
(ii) bﬁ/buz = 2v, W, -2k, = 0
~
“232 -k, =0 (8.14)
{ ¥
(iii)  #8/dy = 29Tmm - 2QST = 0
Vg
um? -k, =0 (8.15)
. s s AT
(iv) b§/bxl = 2kl Al-2k3 M = 0
lTEl i MTES s 0 (8.16)
A nT AT
(v) b@/bx2 = 2k, A, +.2k; = O )
A A\
Aszz + k3 = (8.17)
- 105
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We now combine eguations (8.12) to (8.17) with (8.9) to (8.11) to form the

normal equations, which we write in the partitioned matrix form

I =0 e -5 P =
A
W 0 0 -I 0 0 0 O Uy 0
U, 0 0 -1 ©0 0 O v, 0
0 U, 0 0 -I 0 O $ 0
o D i
I 0 0 0 0 0 A o5 " By (8.18)
0 -I 0 0 O 0 A, fz b,
0 0 -I 0 O -Mm I £ 0
T T o
0 0 0 A 0 -m 0 O 2 0
T A
o 0 0 0 A, I O O % 0 ]

In theory (8.18) could be solved as a set of simultaneous equations to give

solutions for Ql and Qé. Such a procedure would of course be quite impractics]

owing to the size of the left-hand-side matrix so we search for explicit

Ql and Qé. First we introduce Q& as the estimate of'Qi using

; only the information available up to time tl,

expressions for

= As I =1 T -1
- . = A u A = a
i.e X3 ( 1Yy 1) Al wlbl Nl uy (8.19)

with covariance matrix

pe -1 -1 '
CQE = (Al ulAl) = N (8.20)
where
T
Ny = A WA (8.21)
and
u. = A Wb (8.22) |
AL 1 171 i
A A A 5
Now we eliminate Vi, V, and y from (8.18) by successively using (3.21) to git
5 y -
-Wl 8] 0 Al 0 kl bl
Wt g 0 A k
o =y 2 2 b,
=], A
0 D -y M I ks = 0 (8.23)
i T A
Al 0 =M 0 0 xl 0
T A
0 A2 I 0 0 x2 0

A
(8.23) is rearranged to prepare for the elimination of El and Xy
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Applying
n T _-/\
Nl -M 0 0 X1 uy
= N
=M -wm 1 0 k3 0
T 2 = (8.25)
1] I 0 Az Xy 0
0 0 a. ot ® b
9 2 2 2
sing
Applying (3.21) to (B.25) to eliminate Ql gives
£ X =1 A =]
3) 9 ~(M, M [ ¥y I 0 K —MN, Uy
T A
I o A, el = ¥ (8.26)
-1 ~
0 A =u k b
3) 2 2 2 2
We now introduce <., the "predicted" state vector computed using the secondary
hr Y 4
1) model, and xl. X5 is defined by
~y = AL
) %y = mXy (8.27)
?
and substituting in (8.19) gives
give 5 -1 \
= B.
% MN, Uy (8.28)
Also applying (4.16) to (8.27) whilst remembering that implicit in (8.27) is
a vector Y with covariance matrix By (cf. (8.5)) we obtain
) c MGy M+ C (8.29)
Al = .
Xo 1 Y
and substituting (8.6) and (8.20) in (8.29) gives
oy = M U =& (8.30)
Xo 1 M
~ 131 -

worooa 0 o 0 R
i i 1
T T "
Ay 0 M 0 D Ry
0 M gt r @ R —
" Uy . _
a4 A
8] 0 I 0 A2 x2
-] N
L 0 0 0 A, -u, Lkz

oy
(3.21) to (8.24) to eliminate k, gives
1

(8.24)
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Now we introduce

=1 _ =17 -1
N2 = C&; = NNl M+ Um

Substituting (8.31) and (8.28) into (8.26) gives

™ - = o B
=1 25 ~t
—N2 I 0 k3 -xz
T A
1 0 A2 Xz = 0
0 A g K b
| 5 2 ] L Y | "2 ]

- - - A -
Applying (3.21) to (8.32) to eliminate k. gives

7 A ! nt
N2 A2 x2 B N2x2
A i B 1 - b

2 e 2 2

Finally, applying (3.21) to (8.33) gives

(8.31)

(8.32)

(8.33)

-1 i=1, T\™ r=1 1A
(-0, = AN TRy Dk, = by = ARy 5%y
. e -1 -1 T,-1 A
.B. L / - /
i.e Ko ( 5 * AN, TR, ) (b2 A2x2) (8.34)
Applying (3.20) to (8.33) gives
A =L, 0 A
x, = Ny (NX; = A ky)
n A Ar l—l TA
i.e. Xy = X5 - N, Ay Ky (8.35)
Substituting (8.34) into (8.35) gives
A _ Ay ,f--l T -1 r—l T.-1 AL
Xy = X * Ny, (w, ™ + AN, TR, ¥y = Azxz) (8.36)
which is usually written as ‘
~ Al A
R, = Ko G(b, - AX) (8.37)
where G, given by
_ =1 T -1 =1, Ty=1 8.38}
G = N; A, (W, + AN, A,) (

is called the gain matrix.

The covariance matrix of‘%z is derived as follous.

A al
X, = (1 - GAZ)X2 + Gb,
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5)

7)

then applying (4.16) to (B.39), whilst noting that Q& and b, are independent,

giues
T T
ch = (I -GA,)CAav(I -GA,) +GC_G (8.40)
X 2 IR Z b
2 2 2
putting U, = cgl and substituting (B.31) in (B8.40) gives
2
Cr = {1 — BA )N"l(x - AZTGT) + Gwz_lBT (8.41)
Xy :
which expands and rearranges to
7 -1 I_l T ** I—l T -1 T
cQz = (N2 - GA, N ) = (N - GAN,7A, " - GU, )G
(B.42)

The second bracketed term can be shouwn to be zero as follows. From (8.38)

gt T =1 s T ¢

N, A, = G(w2 + ANSTTA, ) (8.43)
hence

-5 B | wall <X 7T

N, A2 - sz o GA2N2 A2 = 0 (8.44)

Substituting (8.44) in (B8.42) gives

ea = Nt o ganwl - - GAZ)N%_I

2 2Ny (8.45)

For smoothing we need to compute Ql’ the least squares estimate of Xy using
all data collected up to and including point 2. To do this we proceed as

follows.

From (8.32) we write

A a T~
k3 + A, k2 = 0
giving v
A
Ky = -AzTﬂz (8.46)

and from (8.25) we write

N T:
R
giving
i - N
Ql = N, lul + N lNTk3 (8.47)

Substituting (8.19) and (B8.47) gives
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~ A =1 T,Tn
X, = X - Nl M ALK, (8.48)

A ;
where k2 is obtained from (8.34).

8.7 Summary of formulae and procedure

A summary of the working formulae and procedure will now be given. To
emphasise the recursive nature of the Kalman filter the suffices 1 and 2 wil]

be changed to i-1 and i respectively and the possible temporal variation of

the transition matrix will be highlighted by using the notation Ni 1.4 for m,
1
Similarly, wm will also vary with time and it is now denoted by wm . The
’ 1
procedure is:
(i) set i =1
(ii) compute the starting estimate of the state vector from (8.19)
& o 1L (8.49)
i g
(iii) increment i
i = £%1 (B.50)
(iv) predict the state vector from (8.27)
A Ar
X, = Mi—l,ixi—l (8.51)
(v) predict the covariance matrix from (8.31)
car = M tem N, T w7t (8.52)
Xy 4 i-1,i i-1 " i-1,i M. 2
i=-1,1i
(vi) compute the gain matrix from (8.38)
6 = N5 Tt an Nt (8.53)
G T o ii i
¥
(vii) compute the state vector from (8.37)
A Ar Ay
= - 5 .54
X Xy G(bi Aixl) (8.54)
(viii) compute the covariance matrix of the state vector from (8.45)
-1 -1
- = - .55
oy = (I GAi)N; = M (8.55)
i
(ix) prepare for the next iteration
¥ = x (8.56)
i &
(x) return to step {483 ).
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The above steps are for filtering. For smoothing we use (8.48)

Paul A Cross- UCL

Fa) Ar =1 T T
Rpg = My ~Myg Mgl & B E7)

where, from (B.34),

N -1 -1 T.~-1 Ny
ky -(ui + AiNi A ) (bi - Aixi) (8.58)

Note that smoothing is carried out after the measurements have been completed.

A
then x

If there are n state vectors (max i = n) we would obtain Qn—l’ ne2? etc.,

until we reached Ql'

Prediction is carried out at any stage simply by using the secondary model

whilst assuming no model errors, i.e. from (8.27)

& R (8.59)

A = M . 4
b 1,1+lx1
with covariance matrix, from (8.31),

T ol
Cas = M, . CAM . . +U (8.60)
xi+l i,i+1 xi i,i+l Mi,i+l

So far nothing has been said of the computation of the residuals. These can

be simply obtained from (8.10)

5. = &% % (8.61)
i g 3,
and can be tested in the usual way (see 5.4.1) for possible rejection. Also,
the model errors can be examined by using (8.11)
9 X X (8.62)

Yo 1,58 = M- Ma.4%a

8.3 Numerical aspects

A guick glance at the formulae in B.2 may give the impression that the Kalman

filter involves a great deal of computational work. In particular, the reader

will notice a large number of matrix inversion symbols. It is important to

realise that for any one cycle of the filter the only inversion occcurs in the

computation of the gain matrix when it is necessary to invert

"t a

. ,N{—lA_T
¥ L e ok

This matrix will have a size egual to the number of observations in the new

primary model, i.e. the number of measurements made at the ith ship position
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in the example shown in Fig. B8.1.

The matrices w.'l and m'l are not obtained by inversions: they are only
s .
symbols for the covariance matrices of the primary and secondary models.

= -1 . : : ;
Also, the matrix Ni " is found from N; without carrying out a new inversiap,

Hence the efficiency of the Kalman filter is largely related to the number of
measurements added at each new time epoch - the smaller this number the more
efficient the Kalman filter. It is worth mentioning here that there is a

mathematically equivalent (i.e. giving identical ansuers) method called Bayes
filtering. This involves the inversion (during each cycle) of a matrix whose
size is equal to the number of parameters in the state vector. Hence if the
number of observations at each epoch is larger than the number of parameters
in the state vector the Bayes filter is more efficient than the Kalman filter,

and vice versa. Formulae for the Bayes filter can be found in Krakiwsky (lg?ﬂ'

8.4 Examples of applications

8.4.1 Navigation

Suppose we have a ship travelling in a steady fashion through an area of
acoustic beacons as indicated in Fig. B.2. At points 1, 2, ..., i the ship
fixes its position by means of distance measurements to a number of beacons

and carries out i independent least squares computations.

Fig. 8.2
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If the results of these computations are plotted and joined up we obtain the

solid line in Fig. B.2. Clearly this line does not represent the true path

of the ship: it is uneven simply because of the errors in the position-fixes.

A line rather like the dotted line in Fig. 8.2 is the true path of the ship

and we need a method which can somehow combine all the individual position-

fixes to estimate this in real-time.

The Kalman filter is the ideal method for this because it can cater for both

the position-fix measurements (primary model) and a secondary model which in

some way assumes that the final path is smooth.

As a somewhat over-simplified

example the filter could be epplied to the foregoing problem as follows.

Let a position-fix be carried out every At seconds with the results of the ith

position fix being Ei° and Ni° with covariance matrix mi'l. Note that the

7 o .
superscript = is used to denote an observed value;

strictly speaking, the

observations are the distance measurements from i to points C, D, E etc. but

for this simple example we are assuming that these have been processed to

produce "observed" positions with an associated covariance matrix computed in

the usual way. The state vector for this problem will contain four elements:

two for the ship's position and one each for the east and north components of

the ship's velocity, i.e.

= [Ei N Vg UN.]T
g pr 8

The primary model

Ax. = b. 4+ v.
1 1 1
will be -
i | D 1} 0 E
D 1 0 8] N
UE
v
L NJi

(8.63)

(8.64)

(8;55)

If we assume the ship to have a constant velocity then the transition matrix

Mi—l,i will be given by
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r1 0 At 0 |
0 i 0 At
i-1,1 7 0 0 i ¥ 0 s
D 0 0 1

In this situation the driving noise (the quantity that will cause the

secondary model to be in error) will contain the two components, ap and &y
of the ship's acceleration and its effect on the state vector y is given by

y = Tg (8.7)
SOy = At2/2 0 ag (8.67)
0 At2/2 ay
At 0
0 At

Notice that when (8.66) and (B.67) are combined as in (8.5) they represent

simple applications of the classical equations relating distance, velocity and

acceleration, viz.

x; = Mx;, ., +Tg (8.68)
P e = o=y == = _—
E i 0 At 0 [E At2/2 0 ap
N 0 g 0 At | |N 0 At2/2 ay
= + (8.69)
v 0 0 1 0 Ve At 0
v 0 0 0 g v 0 At
e Bl 5 JL Mgy L ]

which multiply out to

2
E;, = E;_;+ Ve At 4+ %aEAt
i-1
2
N, = N+ Wy At o+ %aNAt
i-1 (8.70)
Ve = Vp %S0
i i-1
UN = UN. + aNﬂt
i i-1
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Thé,ship's accelerations (driving force in this example) would usually be
considered random (note that if this were not so, very large and practically
impossible velocities would occur). In practice these accelerations are.nnt
known (nor are they needed for the Kalman filter) but an estimate of their
covariance matrix C_ is essential. It would be usual to consider the
acceierations independent and their standard deviations (this term is preferred
here to the synonymous standard error because the motion of the ship is not
itself an error) equal. The size of these standard deviations would be a
function of a number of physical guantities such as the ship's power, the
weather, the state of the sea and the type of motion (e.g. straight line or

turning). To compute W from Cg we use (B.B8). For instance if we denote the

M
standard deviation of the ship's accelerations by O we have

5 (w22 0 [ [ o l[at22 0 st o]
= o at?/2]| |o o2 0 At?/2 0 At o
At O
0 At

|- -

Hence in (B8.65), (8.66) and (B.71) together with the covariance matrix of the
primary model Ni we have all the matrices needed to use the Kalman Filter

equations listed in B.2.

It should be emphasised that the foregoing is not suggested as a practical
procedure for applying the Kalman filter to the described navigation problem.
It is merely set out as a simple example of how to assign values to the
various matrices used by the filter. In practice the problem is likely to be
more complex with a need to combine data from a variety of sources, such as
velocity and heading sensors, and to solve for a variety of parameters,, such

as bias errors in the measuring systems.

Finally, it is remarked that the performance of the filter is highly dependent
on the weight matrices Ui and Um. If we assign large weights to the secondary

model (i.e. W is large compared with Ui) we will obtain a very smooth real-

time path Formths ship but it will be slow to react to sharp changes in
direction (e.g. when a ship turns through 180° when running seismic lines).
Conversely, if mi is large compared with wm we may obtain an uneven path, but
it will react quickly to sharp changes. These problems need to be solved by

experience.
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8.4.2 Inertial surveying

Inertial surveying systems make regular measurements of velocity, typically
about fifty per second, in three orthogonal directions (usually north, east
and "down"). For some applications it is required to have a real-time
estimate of the position of a system as it moves over the earth's surface.
In such cases we would have a state vector consisting of a number of time
varying quantities such as position, velocity, heading errors, gyro drift
rates and accelerometer drift rates. The guantities to be included in the
state vector should be a function of the particular inertial system, the
required accuracy and the capabilities of the on-board computer. As an
example, Gregerson (1975) states that the Litton system used by the Geodetic

Survey of Canada includes seventeen elements in its state vector.

It is not possible, without going into details of the theory of inertial
surveying, to give a full account of how the Kalman filter is applied. An
indication of its application, however, can be seen by looking at a simplified

system.

Adams (1979) describes a two-dimensional system with a seven parameter state

vector

% = I:a, B, v, dp, di, dp, di]T (8.72)

where @, B and y are the orientation errors of the three axes, dp and d\ are
the errors in the positions derived by velocity integration and d$ and di are
the north and east velocity errors. The filter will be used to evaluate the
state vector at every velocity update with the design matrix for the primary

model being given by

0 0 0 0 0 1 0
- - (8173)
0 0 0 0 0 0 i

because the measured quantities at each update are the velocity errors. The
primary model weight matrix, W, will be a function of the precision of the

velocity measurements and will not vary with time

W, = W = (8.74)
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The transition matrix describes how the elements of x vary with time. This

is father complicated in inertial surveying owing to the cyclic nature of the
error propagation (see, for example, Cross and Webb (1980)). Hence the

matrix M will not be quoted here; suffice it to say that it is a sguare matrix
of size seven whose elements are mainly harmonic functions with periods

related to the Schuler period (B4.4 minutes) and the rate of rotation of the
earth. The matrix and its associated covariance matrix U =% is given in full

M
in Adams (1979).

8.5  Concluding remarks

The Kalman filter is a fully rigorous least sguares method for the filtering,
smoothing and prediction of time varying gquantities. As such it can be
described as an optimal filter. Actually the term optimal filter strictly
applies to filters which lead to maximum likelihood solutions, but it has been
shown in 6.4 that for a normally distributed pdf the least squares estimate is

identical to the maximum likelihood estimate.

Of course the advantage of a filter over a normal least sguares computation is
in the organization of the data so that it can be handled by the types of
mini- and microcomputer commonly dedicated to position-fixing systems. To
carry out an ordinary least squares computation using all the available data
up to any particular time would involve massive sets of eguations to solve
and matrices to invert. It must, however, be emphasised that if such a
solution were to be made the solution for the latest data point would be
identical to the Kalman filter solution (the solution for the previous points

would be the same as the smoothed solution).

Finally, it is remarked that, as pointed out by Krakiwsky (1975), the
sequential least squares method of 7.1 1s actually a special case of the
Kalman filter, i.e. sequential least squares is the Kalman filter applied to
parameters that do not change with time. The equivalence of the formulae can
be seen by dropping the subscripts from the state vector and putting

-1

M= wm = 0. Then, for example, equations (7.19) and (8.36) become identical.

- 141 -

Paul A Cross- UCL




PautA

g9, Least squares collocation

The strict mathematical definition of collocation is given by Moritz (1980)
as "the determination of a function by fitting an analytical approximation tg
a given number of linear functionals". The technique is mainly used in
surveying and geodesy to determine the values of quantities at points other
than those at which measurements have been made (or at which information is
known). In its simplest form least squares collocation is exactly equivalent
to a technique known as least squares prediction (or, more commonly, as least

sguares interpolation).

The application of least squares collocation to position-fixing is not as
directly obvious as the applications of the other least squares methods
described in this Working Paper. It does, however, have some important
"indirect" uses, for instance in the prediction of spatially varying
guantities such as gravity, height, deviation of the vertical and geoid-
ellipsoid separation (all of which are needed in classical geodesy to reduce
measured quantities to a reference surface ready for geometric computations).
Also it is a very powerful tool for coordinate transformations, especially in
cases where measurement errors have resulted in variable transformation
parameters. The major geodetic uses of collocation are, however, in the generd
field of physical geodesy where it can be used for many aspects (some of which
have already been mentioned) of the computation of the anomalous gravity field
The technique is included here for the foregoing "indirect" applications and
because it belongs to the general family of least squares methods to which this

Working Paper is devoted.

An essential feature of the method is that quantities which are by nature
deterministic are described in a statistical manner, particularly by the use
of covariance matrices. This is in contrast to the techniques in the rest of
this Working Paﬁer, which use statistics only for measured gquantities (or for
functions of them). For instance if we were to use least squares collocation
to predict the unknown height of a point surrounded by a number of points of
known height we would need to establish a function (known as a covariance
function) from which it would be possible to compute the covariance of the
heights at any two points. This function would be in terms of guantities such
as position and distance between the points. Hence all the elements of ahaiggg
covariance matrix could be computed. This matrix would then describe the

" variation of height in the area in a statistical manner: in flat areas the

heights of neighbouring points would be highly correlated leading to large
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covariances whereas in highly undulating areas we would expect small
covariances (i.e. the height of a point would be largely unrelated to the
heights of neighbouring pointsl, This procedure is in contrast to the better
known process of fitting a mathématical surface to the known points and using

it to predict the heights of other points.

Hence before discussing the technique of least squares collocation in detail
it is necessary to consider the computation of covariance matrices for

guantities that are, in principle, non-stochastic,

9.1 Covariance matrices

Fig. 9.1

Consider n points (Fig. 9.1) at which we know the value of a dquantity (e.g.
height, gravity anomaly, deviation of the vertical or a coordinate trans-
formation parameter) u, i.e. we know ul, Uy eey Un' One method of determining

a covariance function would be to proceed as follouws.

First we might assume that the correlation of the quantity between any two
points i and j is a function only of the distance, dij’ between them. Then

using all n, pairs of points separated by a distance of up to ry metres we

1
compute their covariance from °

L
c, = n z Uiuj (9.1)

The process is then repeated using all n, pairs of points separated by a

distance greater than r, and less than r, metres etc. Generally we can write,

1 2
for the 2 pairs of points separated by a distance greater than Ty 1 and less
than T metres,
c, = 'LE u.u, (9.2)
k AL 3
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We can now plot, e.g. Fig. 9.2, the covariance histogram and draw a curve to—
©

represent the covariance function. The covariance matrix for the n points ©

Fig. 9.2
is now written as

cll 012 — Cln

o cC sy B
c - 21 22 2n (9.3)
u .

: 3 : v
cnl cn2 § s t:m_l
b =l

where any individual element cij’ corresponding to the covariance between
points i and Jj, is determined simply by computing the distance.rij between
them and reading off the value of c from.the curve in Fig. 9.2. Alternativel)

a mathematical function, e.g.

c;5= @ exp(-b rij) (9.4)

where a and b are constants, could be fitted to the data and subsequentlytﬁﬁ
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to compute each element of C.- Once a covariance function has been computed
from a set of data it would be common to use the same function for other

similar problems, especially those that do not involve enough data to enable

Paul A Cross- UCL

an internal computation of the covariance matrix.

For some problems it is possible to compute theoretically the form of the
covariance function. This is particularly appropriate in physical geodesy
where much work has been done on the "spatial covariance function of the
anomalous potential®™. For instance Moritz (1980,84) quotes the general form
of this and Tscherning and Rapp (1974) quote explicit forms of covariance
functions for a variety of geodetic guantities. Furthermore, for some
problems we use idealised forms of covariance matrices based on the manner in
which we would like a quantity to behave (rather than perhaps how it actually
does), e.g. Grafarend (1974) and the use of the Taylor-Karman covariance

structure for geodetic networks.

We now extend the concept of the covariance matrix to cover the situation

shown in Fig. 9.3 where we have a quantity, u, known at points 1,2,3, etc.

Fig- 0.3 v

but unknown at points a,b,c. In this case we find it convenient to partition

the complete vector u into two parts uy and u,

u = [ul | UZJT (9.5)

where uy contains the values of the gquantity at points 1,2,3, etc. (called

data points) and u, contains the values at points a,b,c, etc. (called

2
computation points). Then the covariance matrix of u is correspondingly

partitioned
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C = (9.6)
u ‘
oy C22_

g T
where the generally non-square matrices 812 and C21 (note that E12 = 521) are
often termed the cross-covariance matrices between the data and computation
points. All the elements of C are determined from formulae such as (9.4) in

the manner already described.

Finally it is emphasised that the covariance matrices discussed in this section
do not relate to observational errors. If there are observations at the data
points then these observations will of course have a covariance matrix related
to the precision of the measurements, but this has nothing to do with Cu,

which describes how a particular quantity is spatially (or possibly temporally)

varying.

9.2 lLeast sguares prediction

As a preliminary to least squares collocation we will consider the simple case

of least sgquares prediction. Referring to 9.1 and Fig. 9.3, let uy be a
vector of known guantities at points 1,2,3, etc. and let u, be the unknown

values of the guantities at a,b,c, etc. Again it is emphasised that we are

not here concerned with measurement errors, i.e. u, is perfectly known, but it

- *
, say uz,must be of the

is required to estimate u Any linear estimates of u

z2* 2

form

*

U2 = Ql.ll (9.7)
where § is a linear transformation to be determined.
Let e* be the true error of the estimate Ups then ’

*

* -

e¥ = u,-u, (9.8)
and substituting (9.7) in (9.8) we have

% = - .

g%t = Qul Y, (9.9)

which can be rewritten as

=

e + [@ |-I] [}i} (9.10)
2
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then applying (4.16) to (9.10) and using (9.6) we obtain the covariance matrix

of e*
C = [@ [-z}|c C Q (9.11)
a% e | i I el .
Cor | C22| |-T
which multiplies out to
T T
C = Q0,0 -@,, -C,Ha +C, (9.12)
and reorders to
T T
C,x = Cp, +0Q,,Q° -0C,, -C,,0Q (9.13)
<1 . .
Now C,;C,7C5 1# subtracted and added to (9.13) to yield
-1 T T J =1
Cox = Cop = CpCyCyp + 0648 = QC,, = E508 + Cp 000050
(9.14)
Since cllczi = I (9.14) can be written in the expanded form
| T < =
Cax = Cpp = 0509005 + C,,@ = 0QC,,E,,C,5 = C)hCh50050
ol =1
+ 821811511311512 (9.15)
. . §
which, after putting 812 = C21, becomes
g vl o I §
Cox = Cpp = CpyCi3Cp + (@ =€y Ci7)C, (0 - CpyCy7) (9.16)
We can write (9.16) as the sum of two matrices viz.
Ce* = F+G (9.17)
v
where
3.7
F = Cpy = c21011c21 (9.18)
and
il = T
G = (@-0Cy007)6,(8 - CyEi) (5.19)

Hence we have derived an expression for the precision of any linear estimate,

u;, of Uy We now pose the question: what choice of Q in (9.7) will result
in the best estimate of u,? Examination of (9.18) shows that F is independent

of Q; hence we are only concerned with the effect of Q on G in (9.19). 1In

fact any choice of O will yield a matrix G with non-negative diagonal elements.

o TAT -

s ————eeR
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This is because the ith diagonal element of G in (9.19) is given by the

quadratic form

.
G = gt (9.20)

ii i3 =

: ; ~1 . o e
where g is the ith row of Q - EZlCll and Cll is positive-definite. Hence any
choice of @ will make the variances of the error in each element of u; equal

to or larger than the diagonal elements of F. The minimum variance estimate

will therefore be obtained when G is a null matrix, i.e.

i
Q-cC,C =0 (9.21)
or
B~ G, C (9.22)
21°11

Substituting (9.22) in (9.7) gives the best (in the sense of minimum variance)

linear estimate of u2 as

-1

h —

0, = €,C Y (9.23)
which, because of its minimum variance property, is also termed the least
squares estimate. (9.23) is often written in the following manner for the

prediction of u at any particular computation point p:

A B ol

b, = [Epl Cp e Cpn] €17 Cyp =++ss O uy (9.24)
Cpy Cpp *+vv+ S u,
_?nl Cp *reee O u

where Cpi represents the vector of covariances between point p and the ith
]

data point and all other symbols are as previously defined, i.e. Uys uz,.--s%

are the values of the guantity at the data points and the square matrix to be

inverted is the covariance matrix of the guantities at the data points.

Finally, it is worth noting that the evaluation of ﬁz from (9.23) does not, i

practice, involve the inversion of C This is because the product Ciiulcw

;g
be replaced by a vecter y where y is the solution to the square set of line#

equations Clly = ul.
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g, 3 The least squares collocation equations
.—'—f_f

In its simplest form we can consider least squares collocation as a direct
extension of least sguares prediction to the case where the guantities being
determined at the computation points are not generally the same as those being.
measured (or known) at the data points. For instance in physical geodesy,

from which the technigque evolved and in which it finds its greatest application,
the guantity to be estimated is generally the anomalous potential and the
measured (or known ) quantities are usually gravity anomalies and/or deviations
of the vertical. Furthermore, the general collocation model is also able to

take into account measurement errors at the data points and the possible

requirement to compute certain parameters during the prediction process. For
instance we may wish to recover the parameters of the normal gravity field in
the aforementioned physical geodesy example, or in the application of the
method to coordinate transformations we may wish to determine the parameters

of a specified transformation. Here we will treat the problem in its most

general form and later the least squares prediction formula will be shouwn to

be a special case of collocation.

Consider a set of data points at which we have made n observations. Let there
also be g computation points and m parameters to be recovered. As usual we
will denote the true values of the modelled observed quantities and the
parameters by the vectors Z and X respectively. We can write down n, generally

non-linear, observation equations.of the form

F(x) -2 = 0 (2.20)
Also we rewrite (2.1) in the form
L = L+e (9.25)

b4

where e is the total "error" in the observations (i.e. the difference betuween

the observed and modelled guantities). In collocation this total error is
considered to be the sum of two independent errors usually called the signal
and noise, and denoted by the symbols S and n respectively. Hence (9.25) is

written as

b = F& gy (9.26)

After linearising (2.20) using (9.26) we obtain
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Ax -b+s +n = 0 (9.27)

Paul A Cross- UCL

An explanation of the terms signal and noise is now necessary. The noise is
simply the random measurement error in £; it is basically the residual

vector, v, in all the previous sections of this Working Paper, with a change
of sign. The signal can be most usefully interpreted as the inability of the

chosen model, when simplified to

Ax = b+ v

= b=n (9.28)

to describe completely the physical situation. This may be for one of tuwo,

often indistinguishable, reasons.

(i) The model F(x) = Z may be incomplete and/or inaccurate, i.e. there may
be some parameters that have not been considered and/or those that have
been considered may not have been correctly related to the observed

guantities.

(ii) The measurements may have systematic errors that have not been
modelled, either by the inclusion of suitable parameters or by the

selection of the correct stochastic model (i.e. the weight matrix).

In other words there may be some signal in the system that is not being
modelled by (9.28) and the measurement noise covariance matrix, which we nouw
denote by Cn. The meanings of the terms may be further clarified by an

example.

Consider the problem of the geodetic datum transformation from an established
local (astrogeodetic) coordinate system, such as 0SGB36 (the British national

mapping coordinate system) to the satellite-Doppler coordinate system. The

process would be to observe Doppler coordinates (X?, Y?, ZE) at, say, p points|
(i.e. i = 1,2, ..., p) with known coordinates (XE, Yt, 22) on the local syst%vf

We now select a transformation model, say translation only, and write down the

collocation observation equations as follows

Ax —b+ s +n = O (9.27)

where

- 150 -




s

Te
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1 0 0 Xl - Xl é
D L Ol
- Y
D i ] Yl 1 %
D I ©
- 7 g
8] D 1 Zl 1
D L
i} 0 D X2 - X2
D
A = 0 i 0 b = Y2 - Y;
(3p x 3)
D L
0 0 1 ZP - ZPJ

and the translation parameters are

> S [AX AY AZ]T

In this case n would represent the noise (random observational error) of the
Doppler measurements and s would be the signal due to the following two

causes, of which the second is likely to be the larger in practice:

(i) oversimplification of the basic model - we should also, in practice,
be including parameters for rotations and possibly a scale difference

between the two coordinate systems |

(ii) distortions in the local coordinate system due to a variety of causes

such as lack of scale control, computation in blocks, etc.
The problem of collocation is now to estimate simultaneously the following:

(i) the parameters x ‘

(i1) the signal s, and noise n at the data points

1

(iii) the signal s, at the computation points, i.e. in the foregoing example

2
points at which it is required to transform from local to Doppler

coordinates but at which there are no Doppler measurements.

It is an essential prerequisite to the application of least sguares collocation
that we know the covariance matrices of both the signal and the noise. Cn, the
covariance matrix for the noise, is obtained in the usual way (it is equivalent

to C, in 4.2) and C,» the signal covariance matrix for both the data and
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cuhputation points, by a study (such as that outlined in 9.1) of the
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variation of the signal where it is known or can be estimated. Cn will often
be diagonal but CS will invariably be a full matrix as the whole point of
differentiating between the signal and the noise is that the signal is highly
spatially (or possibly temporally) correlated and has completely different
statistical properties to the noise. It should be noted that the statistical

expectations of both the signal and the noise are zero, i.e.

Il
o

E(s) (9.29)

E(n) (9.30)

I
=

The derivation of the collocation equations now proceeds as follows. Let s

be a vector containing the signal at both the data and computation points,

B o= [51 | Sz]T (9.81)

Then (9.27) can be rewritten as

. B

Ax -b+Bs+n =D (9.32)
with

B = [1 10] (9.33)

Note that if we have g computation points then B will have dimensions
(n + q) x n with I, a unit matrix, being n x n and 0, a null matrix, being

g X n.
We now wish to estimate x, s and n in (9.32) using the method of least squares,
i.e. minimising

sTD-ls % nTC—ln
s n

L4
Hence, using Lagrange's method of undetermined multipliers as in (3.12), we ha
- - T
3 = sTCSls + nTCnln + 2k (Ax = b + Bs + n) (9.34)

which is minimised by differentiating as follous

%% = AR = b (9.35)
-%§ = 2c;1§ + 28R = O (9.36)
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0%

=1n

2 - 2t h+2k = 0 (9.37)
n n
Also the least squares estimates must satisfy (9.32), viz.
AX-b+BS+0 = D (9.38)

Now after dividing (9.35) to (9.37) by 2 and combining them with (9.38) we

obtain the following least squares hypermatrix

- i = ot 0
c;l 0 1 0 [ 4 0
0 c;l Bl D 8 0
5 = (9.39)
I B 0 A k b
0 0 A’ 0 '3 0
which, after applying (3.21) to eliminate N, reduces to
b gl 0 s 0
s
A
B ~C, A k = b (5.40)
0 Al 0 % 0
A further application of (3.21), to eliminate S, leads to
A
-(cn + BESBT) A k b
= (9.41)
Al o | (% 0

Now, using (9.33) whilst noting (9.31), the expression —(Crt + BESBT) in (9.41)

can be simplified as follouws

/ ]
-(cn + BC_B ) = - C. - [I 0 C, B o i | (9242)
i 12
C C 0
"1 "
£ _(c:rl 8 ) (9.43)
1
vhere Cs and CS are the covariance matrices of the signal at the data and
1 2
computation points respectively and ES and Cs g are their cross covariance
21

matrices.

Substituting (9.43) in (9.41) gives
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2 " N

—(c_ + C. ) A Kk b
: 1 = (9.44)

AT 0| |% 0

Application of (3.21) to (9.44) leads to
=1,y -1
2 = (AT(C 8. ) lA) lAT(C +C_)b (9.45)
n Sl n Sl

which is the least squares collocation expression for the parameters.

Similarly, application of (3.20) to (9.44) produces

k = -(c +c, Y e - a%) (9.46)
1

Then substituting (9.46) in (9.36) and rearranging leads to

§ = € BT(C + C )‘1(b - A%) (9.47)
= n S
€
which is the least sguares collocation expression for the signal at both the
data and computation points. The noise at the data points is obtained by

substituting (9.46) in (9.37) to yield

f = c(c +cC_ )b - AR) (9.48)
n'n s
b !
Hence we have derived expressions for the least squares estimates of the
parameters, the signal at both the computation and data points, and the noise
at the data points. Next we must derive the corresponding covariance matrices
so that we can measure their precision. First we need an expression for the

covariance matrix of the vector b.

From (2.16) in the special case of observation equations
b = F(x°) -2 (9:49)
and substituting (9.26) leads to

b = F(@) =T =nw=e (9.50)

1

Then applying (4.16) to (9.50), whilst noting that F(x°) and % are

not stochastic and that we have already assumed n and 81

have
E = B #E (9.51)

Now we substitute (9.51) in (9.45) to yield

- 154 -

to be independent, V8

Paul A Cross- UCL




je

& = [(ATEElA)'lATB;l]b (9.52)

Application of (4.16) to (9.52) then produces the following expression for the

covariance matrix of the parameters:
_ T =1 1T -1] [ T~1 1T —l]T
Ly = [(A o A) A . ]G, (A C, A A C, (9.53)

which simplifies to

]

R,
Ca (A'C_"R) (9.54)

[AT(cn +C, )‘1A]“l (Prom (9.51)) (9.55)
1

To obtain the covariance matrix of the least squares estimate of the signal,
at both the computation and data points, we substitute (9.51) and (9.52) in
(9.47) to yield

T ~1 T~-1 ,-1,T -1
s = {css CL7[I - A(A'CA) A, ]} b (9.56)
Then substituting (9.54) and applying (4.16) to (9.56) leads to
B = {c Bclr - ACAATc“l]} C {c B[ - HCARTC_IJ}T
g5 s b x b b Ls b ® b
(9.57)

which simplifies to

g | g i | T,
Ca = ESB C,BC, - CSB cb ACQA C, BC, (9.58)

Then substituting (9.51) and (9.54) in (9.58) leads to the following expression

for the signal covariance matrix

Ba = E BT(C + ¢ )V lec .
=] - n Sl ‘S

T -1, T -1 a=1,T -1
-C_B (cn + cSl) AlA (cn + csl) AT A (cn + c#l) BC,

(9.59)

A similar treatment of (9.48) leads to the covariance matrix for the least

squares estimate of the noise at the data points

B = O (¢ &8 )'lc
n n n Sl

o . § -1 1T -1
..cn(cn + csl) AL A (cn + Csl) AT A (cn 3 csl# c_ (9.60)

n
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Equations (9.45), (9.47), (9.48), (9.55), (9.59) and (9.60) are the working

formulae for "least sguares.collocation.

9.3:1 Special cases

The following three special cases can be identified.

(i) Collocation without parameters

Many practical problems to which collocation is suited do not require

the recovery of parameters, i.e. the system is completely modelled by

the signal and the noise. For instance when using collocation

determine geoid-ellipsoid separation from gravity anomalies the only
unknowns are the signal (separations) and noise (gravity anomaly

measurement errors). In such circumstances A = 0 and (9.47), (9.59),

(9.48) and (9.60) simplify to

§ = caTw % de
=] n S
T
with
Ch = C BT(C % C )_lBD
g S R 8 S
®
and
w o= ClE &+ )_lb
n n S
1
with
n . n n =] n

1

(ii) Collocation without parameters and without noise

It is not unusual to consider that the observed guantities are
error, i.e. Cn = 0. This may be either because the particular
extremely insensitive to observational errors, e.g. in certain
circumstances small random errors in deviation of the vertical
insignificant errors in geoid-ellipsoid separation, or because

statistics of the observations are unknown. The least squares

collocation equations for the signal (now the only unknouwn), (9.47) and

(9.59), then simplify to

s w CSBTEs-lb
1
with
s = BTc‘ch
] 8 Sl
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(1ii) Least squares prediction

If we further simplify the problem to the situation where the observed

Paul A Cross- UCL

(without noise) quantities and the signal are the same (e.g. both gravity
anomalies or both transformation distortions) then, using the notation

of 9.2, we have

.
s = [Ul I u2] (9.87)
b = u (9.68)
C = C (9.69)
| y
and
c c | ¢ c.. | f
s; 5152 11 2 §
by = - (9.70) ¢
C E C C
5,8, 8, 21 79 |

(9.71)
C
11 [ | JT
= |==1 = C C (9.72)
_F21 i 21
Substituting (9.72) in (9.65) yields
A T.-1
g8 = [cll [ C,pl €110 (9.73)
b ¥
=3 (9.74)
Boqbyy B

Finally, substituting (9.67) and (9.68) in the left and right hand sides
respectively of (8.74), we have

u u
it o PO e (9.75)
Uy c,..Cohy
#1117
A
i = 9.76
1.€ Ul Ul ( )
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A -1

Uy = CpCi7yy (9.77)
[
with (9.77) being identical to (8.23). Hence we have shown least squares

prediction to be a special case of least squares collocation.

9.4 Closing remarks |

Least squares collocation is a large and highly advanced mathematical subject.
This is exemplified by Moritz (1980), the modern standard work in physical
geodesy, which devotes about 250 pages to it. The major development areas are
in the determination of suitable covariance matrices for its multitudinous
applications and in numerical and organizational technigques, for example
step-by-step collocation (often called "stepwise" collocation), to increase its
efficiency. There is currently much discussion on the proper role and
interpretation of the signal covariance matrices for both collocation and simple
least squares prediction. This is largely because surveyors and geodesists are
used to using covariance matrices to describe observational errors and hence
unknown quantities sampled from infinite populations. The use of covariance
matrices to describe the variation of a finite population (e.g. gravity
anomalies or height) is, however, not unknown in other sciences, for example
Moritz (1978) points out that the world's human population is finite but we

commonly take small samples and make inferences based on these.

Finally it is reiterated that this Working Paper is not an attempt at a full,
in depth treatment of collocation theory. The objective has been to present
the topic as one of a family of advanced least squares techniques, to point to

some of its applications and to interpret some of the related terminology.
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Appendix 1  Proof that E(coz) = 1
We define coz = GTwG/(n-m) (A1.1)
and wish to prove that

E(coz) = 1 (A1.2)

We begin with a set of observation equations

A;z = b 4+ { (Al.3)

. . A
and introduce A as the true observational errors and 6X as the true errors

of the least squares estimates of the parameters. Hence
AR +6%) = b+ A (Al.4)

Premultiply (Al.4) by ST 4o dbtatn

WA (% + 88) = $Tub + §Tua (A1.5)
which rearranges to
A A AT AT
vUW(AX = b) + v WASx = Vv WA (A1.6)
but from (3.47), vIUA = 0, and substituting (A1.3) in (Al.6) gives
e = $Td = aTwd (AL.7)

Now premultiplying (Al.4) by ATN gives

ATwA (% + 8%) ATl % ATUA (A1.8)

Il

which rearranges to

ATw(A% - b) + ATwAsK ATua (A1.9)

Substituting (Al.3) and (A1.7) in (Al1.9) gives

§Two + ATwAsE = A'ua (A1.10)
Taking expectations gives
E(Ywd) = E(aTwa) - £(aTwAsR) (A1.11)
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but

I

E(ATMA) n (for n observations)
and it will be shown that

E(aWASR)

Il
=

Substituting (Al1.12) and (A1.13) in (A1.11) gives
AT a
E(V wl/(n-m)) = 1

; T .
To prove (Al.13) we premultiply (Al.4) by AW to give

ATUA(R + 6%) = A'ub + A'uA
T FAY T ¥
but A WAX = A Wb (normal equations) so (Al.l4) becomes
aTuast = Alua
=1
i.e. 8% = (ATUA) ATWA

T .
Premultiplying (A1.15) by A WA gives

=17

ATwasd ATwa(aTwA) LA ua

I

Tr[ATmAATwA (ATMA)_l]

now E(MAAT) = 1 so taking expectations in (Al.16) gives

’

E(aTunsk) = Trl:!-\ThlA (ATuA)"l]

Tr (1)

Il
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4)

L5)

16)

Appendix 2 Derivation of formulae for w testing and external reliability

The purpose of this appendix is to derive the formulae

& T4 T 5

0. = g wu/(ei wcGuei) (5.22)

on = (e WCylle o {5.25)
i

G. = 3. (=) (5.25)
o 1" M, ;

1
and

N u

Ay, = 6, Yi% (5.36)

used in 5.4.1.2 and 5.4.1.3 for blunder detection and the measurement of
reliability. We begin with the linearised model for the special case of

observation equations, which is given in 2.3.1 as

Ax = b+ v (A2.1)
where

b = 4 - F(xX) (A2.2)
and

A = OF/dx (A2.3)

The least squares estimates of x and v are given in 3.1.1 as

T o
& = (A UuA) LaTub (A2.4)
and
¥ = A% —b (A2.5)
. [A(ATuA)'lATw = I}b | (A2.6)

with covariance matrices given in 4.3 as

v

Cy = (ATMA)_l (A2.7)
and
Lo = gl A(ATMA)“lAT (A2.8)

Formulae (A2.2) to (A2.B) represent the real computations that would be
carried out for a particular data set (irrespective of whether-or not it
contained a gross error). If, however, the ith observation included a gross
BrTor Ai then, although (A2.1) and (A2.2) were used for the computations, they
would no longer describe the physical relationship between the parameters and

the observations. The correct linearised model would be
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ABx = b -=e.A., + v
T |

where e, is a null vector but for the ith element which is unity, i.e.

2. = [DU "v e 1 s DD]T
1

Now in order to detect gross errors Baarda (1968) has introduced a test

statistic ﬁi given by

A
w.
1

A
di/béi
where

A
v & =B

2 is the ith observed value

derived from a least squares computation using all observations

except £i

Ua is the standard error of Si
5

It is clear that, since least sguares estimates have been shown (in 6.1) to

be unbiased
AC —
E(£i ) = zi

where E; is the true value of the ith observed quantity.

Taking expectations in (A2.12) gives
n Ll o
E(di) = E(Li) - E(Li )
but, since Li contains a gross error Ai, we can write
E(Li) = 4, + A

Substituting (A2.13) and (A2.15) in (A2.14) gives

4 =
E(di) = £i + Ai - li = Ai

and rewriting (A2.16) gives

Ai = E(di) = di

which can be substituted into (A2.9) to yield
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J)

1)

2)

tions

=)

.4)

L5)

16)

17)

Ax + e.d, - p -v = 0 (A2,18)

Ue now apply Lagrange's method to determine the least squares estimates of x,

Cor ¥ " A A A 3
di and v which we write as X, di and vV respectively. Hence we have

3 = UTWU + 2kT(Ax + eiE; - b= v) (A2.19)
with
28/a0 = 28w - 2k' = o LW -k = 0 (A2.20)
2/0x = 2k'A = 8 L&k w 1 (A2.21)
AT TA
b@/cdi = ke, = 0 e, = 0 (A2.22)

Hence we write the least squares hypermatrix for the simultaneous solution
of (A2.18), (A2.20), (A2.21) and (A2.22) as

W £F 0 0 v 0
1 0 A e & b
2 or i P = (A2.23)
D A 0 0 X 8]
T
h 0 e, O 0 | _ﬁa 0

Application of the block elimination process, (3.21), to eliminate { from
(A2.23) gives

™ A e, R b
T - A
A 0 1] X = 0 (A2.24)
&' O @ d. 0
i i
A
A similar process eliminates k from (A2.24) to give
B A
ATNA ATMEi X ATUb
" $ " = T (A2.25)
e, WA e. lWe, d. e. Wb
A 1 5 i 4 1 |

Finally the elimination of Q from (A2.25) yields

“i = l;iTWEi - eiTwA(ATMA)_lATwei__l [eiTm - eiTwA(ATMA)_lATU]b
(A2.26)
We now put
p = eiTM (A2.27)
and
g = A(ATNA)_lATN (A2.28)
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Then substitution of (A2.27) and (A2.28) in (A2.26) gives

i, = [poy = o0, ] [ - ]
d. = [pei pqei]_ p - pq|b

Application of the propagation of error law, (4.16), to (A2.29) then gives

? = [pey - poe, I [ - pa]e, [o7 - a'0"] [pe, - pae, I

b

(A2.29)

I

(A2.30)
Then putting C_ = Wt and expanding (A2.30) gives
2 1 -1 T -1 T -1 TT
oA = [pai - pqei]* [pw P =pgd p -pUgp
i
-1 TT 1
+ pgtl Tgp ] [pei - pqei]' (A2.31)

The middle term of (A2.31) is now considered using (A2.27) and (A2.28)

-1

middle term

e.TmM We,
1 i

-1,T

-1

mA(A wA) A Ww w
Tuw wA(A wA)~ = T
eiTmA(ATmA)'l ATuu™ wA(aTwa) LA ue (A2.32)
which reduces to
. =y T
middle term = e, Ue, - wA(A WA)™ (A2.33)
= pe; - pae; (A2.34)
since the third and fourth terms of (A2.32) cancel out.
Now substituting (A2.34) into (A2.31) gives
L
" [ — ae ]-1
°di = P8y =~ PAgy
T T g AR 2 - ]-1
= [ei wei e, WA(A WA) A Uei (A2.35)
Also substituting (A2.8) in (A2.35) yields
2 T ]—1
cai = [ei mccwei (A2.36)

We now substitute

(A2.35) into (A2.26) to give
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L)

2)

3)

4)

i5)

36)

3, = on 2 [e.Tw - e.TNA(ATMA)—lATM]b (A2.37)
g di i 1

and substituting (A2.6) in (A2.37) gives

8, = = 0On 29T
i dg. 3
1

WY (2.38)

and, noting that for a matrix containing a single element the inverse is simply

the reciprocal, we can substitute (A2.36) into (A2.38) to give

as>
1l

TR T,
e, mu/(ei Wﬂawei) (A2.39)

and

T 3
s (ei “Cﬁwei) (A2.40)

i
which is (5.23).

Then the U statistic of (A2.11) is given by

T T %
ﬁi = =8 m{}/(ei UCGUEi)z (A2.41)

which is (5.22) (note that the minus sign can be ignored as we are only

interested in the magnitude of Gi). ‘Hence we have proved (5.22) and (5.23).

In the special case of W being a diagonal matrix (wuhose ith diagonal element is
l/biz, where aiz is the variance of the ith observation) then eiTm becomes a

null vector but for the ith element which will be l/biz, i.e.
T 2 T
e, W = [n 0...10° ... 0 g] (A2.42)

In this case the numerator of (A2.41) becomes

e, Wb = $./02
g, i1
and the denominator becomes ¥
3 3 [ 2 2 2 J%-__ 2
(e, uc We.)* = (1/'.:ri ) cﬁi (1/:i ) = cﬁi/ci (A2.43)
Then (A2.41) becomes
~ Fal
= /A -
u, %/Ui (A2.44)

uhere o is the standard error of the ith residual Gi; hence (5.25) is proved.
1 :
To derive (5.36) we proceed as follouws.

A
Let. § be computed from the least squares estimates of the parameters by the

linear transformation
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7 = 5% (A2.45)

(A2.4) and (A2.7) are combined to yield

5 = EQATUD (A2.46)

and if the ith observation includes a gross error Ai its effect on the

parameters will be AQi where

N
Ax.
1

CaﬂTNAb, (A2.47)
X X

and

bb, [D 00...4,...0 0]1' (A2.48)

% A A
Similarly, using (A2.45), we see that its effect on ¢, Awi, will be
A T T
Ay, = s Coh WAb, (A2.49)

If W is diagonal (i.e. if we assume the observations to be uncorrelated),

(A2.49) can be written, using (A2.48), as
A T
Ay, = s cQaiuiAi (A2.50)
where a; is the ith column of A and w, is the ith diagonal element of W. Note
that
g, = Aa* (A2.51)
i i :

Now consider the product sTCQBi in (A2.50),

8 CaE, = s EAETq, (A2.52)
x i i

where E is a matrix of the eigenvectors of C; and D is a diagonal matrix whose

elements are the positive eigenvalues of CQ. Note this decomposition is"always

possible with symmetrical positive-definite matrices (see Fox (1964)).

Putting o
Z .= ED* (A2.53)
in (A2.52) gives
STCAE_ = sTZZTa_ (A2.54)
X L 1

Furthermore if we define

P = Zs (A2.55)
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9)

ote

i1)

i2)

10se

Lways

53)

54)

55)

and it
‘ q = Za. (A2.56)

then (A2.54) simplifies to

T T

sCpa, = pg (A2.57)

Now for any vectors p and q
I T 3, T 3
p Q/[(P p)*(q q)ZJ s 1 (A2.58)

because the left hand side of (A2.58) is the cosine of the angle between the

two vectors (as defined in n-dimensional space).
Rearranging (A2.58) we have
T T A T
ola = (p'p)¥(q'a)? (2.50)

Then substituting (A2.55), (A2.56) and (A2.57) in (A2.59) yields

T TooT b Tool. ok
s Cpa, < (s'22 s) (ai 7z ai) (A2.60)
Now, noting from (A2,52) and (A2.53) that
T
' = cp (A2.61)
we rewrite (A2.60) as
;i T, & T %
< 2 2
s Cpa, (s cgs) (ai CQai) (A2.62)
Then postmultiplying both sides of (A2.62) by w.A; yields
s Caa, w,A, < (STCAS)%(a Teaa )%w A (A2.63)
L e 1 X 1, A i7i *

v

Now we can substitute (A2.50) and (A2.51) in (A2.63), whilst noticing that

oEz = STE;s (A2.64)
and

A2 H |

°.” = 8 C;ai (A2.65)

and rearrange to yield

A@i < (SiAi/ciz)c$ (A2.66)
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Now if the size of the blunder Ai is equal to the boundary value as defined

in S5e4,l.2, d.e.

A, = A (A2.67)
we can write, from (5.32) and (5.33)

g _ 2
A, = 6,0, /bG_ (A2.68)
1
Then substituting (A2.68) in (A2.66) gives
5.
A u i
Ay < 8 7 a@ (A2.69)

<
v

i
and, from (5.37), the bracketed term in (A2.69) is equal to Y., s0 we can

which is (5.36), which was required to be proved.
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67)

.68)

.69)

.70)

Appendix 3 Numerical examples

A3.1 Combined case

Photographic observations to a satellite have produced the following fiye

observations of time and altitude with standard errors of 0.001 sec and 2ug

respectively.
Time
18 hrs 04 min 10.1152 sec
1B 04 15,2370
18 04 20.2220
18 04 24.9580
18 04 29.7820

It is required to determine

(i) the least squares estimates

Altitude
45° 171 40M1
47 51 25.6
50 20 58.2
52 42 59.6
55 07 43.9

of the slope and intercept of the straight

line in which the satellite is assumed to be moving during the period

of observation
(ii)

(iii)

the standard errors of these

the least sguares estimate o

18 hrs 04 min 22.0 sec and

The basic mathematical model for th

estimates

f the altitude of the satellite at

its standard error.

e ith observed time and altitude is written

as
fy (%, 2) = X L+ x, - =0 (A3.1)
where T
* = [§l §2] y ;l = true value of the slope, Y
22 = true value of the intercept
E = [E a -'E a LR Y E a]T
- 1 1 2 2 5 B

with Ei and EE being the true values of the ith time and altitude respectively.

We note immediately that because (A3.1) cannot be simplified to

fs (X) = Ii

or

fy (Z) = 0o
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the problem requires the uss of the combined least squares method.

problem is non-linear and hence approximate values of X are required.

Also the

For

convenience we reduce the number of digits in the problem by subtracting

18 hrs 4min 10sec from the times and 45° from the altitudes and then express

the observations in units of seconds of

tl = 0.,1152
t2 = 5,2370
t3 = 10.2220
t4 = 14.9580
t5 = 19.7820

Approximate values are computed as

; = u]
from f5, putting X, = o, X4

. = 0
from Fl, putting X; = 1843, %o
Then, using (2.17), (2.18), (2.16)

Ay, L4 b and W as follows:

&, 3
iy A
A = £, 4 C =
t, 1
B 0 o]
al - xl tl - x2
o 0 t _ (n]
g =% Tp =%
tl - . - L] m"l
] (u]
%~ % %™ % |

]

(.nQ bQ MQ MQ HQ
I

follows

1843

= 850

time and arc respectively, viz.

1060.1
10285.6
19258.2
27779.6
36463.9

and {(3.7) respectively, we obtain matrices

x?_—l 0 0 0 0 0 0 0 O
0 O x;-l 0 0 0 0 0 O
0 0 0 O xi—l 0 0 0 O
0 0 O 0 0O o0 xi—l 0 O
0 0 2
i 0 0 o 0 0 0 x l_J
-—2 -
% o 2 i
o 2 é
by 5 2
- .
.'02
0 tS oaz
5
5 =

Substituting the observations and their standard errors along with the

approximate values of the parameters then leads to
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0.1152 : | 1843 -1 0 O O O O O O
5.2370 1 0 01843 -1 0 0O 0 0O O
B m 10.2220 3 C = 0 0 0O D01843-1 0 0O O
14,9580 1 0 0 0 0 0 01843 -1 O
19,7820 'l 0 0 0O 0O 0O 0O 0 01843 -1
_ _ - -
-2,21 1075 0
8
-216,19 10
4
b = -430,95 ™ = 1070
B 8
-637.99 10
%
-B44,33 10
- =l 0 4

Using (3.25) we obtain the least squares estimate of x as follouws

[100.9914 6.8023
al(cu™c)2a

6.8023 0.6760

[L4296.9727
AT(cw'lcT)‘lb

| —288.1940
[ 0.030729 -0.309211
[AT(cu‘lcT)"lA]‘l . | p
| -0.309211 4.590747
-42.929
¥ [AT(cm‘lcT)“lA]'l AT e) s =
5.645

Hence the least squares estimate of the slope

- xi + Ql = 1843 - 42.929 = 1800.07 "/sec

and the least squares estimate of the intercept
= xy + %, = 850 + 5.645 = B55Y64
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In practice we would now take a new x° equal to the above estimates and repeat

the computation until % was insignificantly different from a null vector.

We use (4.43) to give the standard errors of the least squares estimates of the

slope and intercept respectively as follows

i
op = (0.030729)2 = 0.18 "/sec
i,
Oa = (4.590747)% = 2"14
%5

The least squares estimate of the altitude of the satellite at
18 hrs D4 min 22.0sec and its standard error are obtained as follouws.
When time = 1Bhrs 04min 22.0sec, t = 12

azimuth = 45 + {12 x 1800.07 + 855.64}"

= 51° 14' 16%49

In general o = 45 + th + Qé '
P
= @ <4 ax
a]
where a = [t 5
crg = a la a
o X
= [12 1] 0.030729 -0.309211 12
-0,309211 : 4.590747 1
CA = 1%26
(o'

It should be noted that this example could actually be solved in a simpler way
without use of the combined least sguares model. The procedure adopted here
has been chosen to exemplify the general approach to combined least squafés

problems rather than to show an efficient procedure for curve fitting problems.
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A3.2 Special case of observation egquations

Fig. A3.1

Two nearby offshore platforms are to be fixed from the following measurements,

where the numbers in parentheses are their standard errors.

Distances

1 = § 87921.2 m (5 m)

2 = 5 114948.5 (5 m)

3 - 5 147802.4 (5 m)

2 = B 114737.8 (5 m)

3 - 6 146667.7 (5 m)

4& = § 146156.3 (5 m)

5 - 6 1981.81 (0.02 m)
]

Azimuth

5 - 6 316° 18' 05%7 (3")

Position

255086.5 m (3 m)

Eastings of 5:
5: 964173.1 (3 m)

f‘
Northings of

Given that stations 1, 2, 3 and 4 have known coordinates of
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E N
d: 216498.72 m B885174.98 m
2 163304.56 B894962.77
3 108791.23 943117.05
4 109007.10 986075.53

carry out the following.

{4} Compute the least sguares estimates of the coordinates of stations

5 and 6.

(ii) Compute the least squares residuals and test for any gross errors in

the observations.

(iii) Estimate the precision of the position-fix by computing the following:
(a) the absolute error ellipses at stations 5 and 6
(b) the relative error ellipse between stations 5 and 6

(c¢) the standard errors of all azimuths and distances computed using
the least squares estimates of the coordinates of stations

5 and 6

(d) the standard error of the angle subtended at station 5 between
stations 6 and 2 computed using the least squares estimates of

the coordinates of these stations.

(iv) Assess the internal and external reliability of each observation by
determining its T and Y factors. Compute the probability of accepting
gach observation with a gross error of four times its standard error
if rejection is carried out using the w statistic with a 5% significance
level. Also compute the effects of undetected blunders of four times
their standard errorsin each observation on the least squares estimate

of the derived azimuth between stations 5 and 6. ¥

This problem contains three different types of observation: distance, azimuth
and position. The first stage is to derive the general form of each observation

equation.

Distance between stations i and j

Functional model f(X) = Z2:
- B a2 - co. 2 s
{(Ei - Ej) + (Ni - Nj) ;o= dij
35 linearised model Ax = b 4+ v :
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of of

2, % * W

I X i 7
where

d°.

1]

Differentials are

Similarly

b

N,
i

Reii
B,
*y

of
N,
%3

==
QF ; of o
dN. dE. — e . =d
AR+ TR I o Ny (g = dgyl +

- {(Ez = 53)2 + (Nz - Ng)z}%

evaluated (at X = x°) as follous:

= {(Ei - Ej)2 + (Ni - Nj)z}%
(D 0)2 =] 02-% o 0
= %{ Ey = Ej + (Ni - Nj) } 2(Ei - Ej) i
(0]
. (E? - Ej)/dgj
[a]
= (N - N?)/dgj

(a] o 0
= -(Ei - Ej)/dij

0 s} (s}
= _(Ni = Nj)/dij

Azimuth from station i to station j

Functional model f(X) = Z:
tan—l {RE - E )/(N - N )} = o
J o j 3 ij
linearised model Ax = b + v:

af of 2f df _ o
AF. dEi + W dNi + 3. dEj + . de = (aij - aij) + v

i 1 J J
where

P. = t 'l{ E2 - E9)/(N° — n° }

Differentials are

f

evaluated (at X = x°) as follows:

- tan"l{(sj - £)/(y - Ni)}
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- 2
Note that if y = tan lx, dy/ox = 1/(1 + x°); hence

SR VAR CEER VORI SV ORER
2
= vy - Ni)/dgj

2 o
8 {urn s gy - ) /0y = NI} L (€, - £ - )P

BN,
1
2
O
- (Ej - Ei)/dij
Similarly
oF  _ _ 02
oE, = = N;)d,
h|
o 02
on, = (€5 = E;)/d;;

Note that in practice the above four differentials are usually multiplied by
206264"8 to convert the:dimensions of the lirearised model from radians to
seconds.

Position of station i

Observed eastings and northings will lead to two eguations.

kd) For eastings functional model is

E. = 1.
1 1

where Ii is the true value of the observed eastings, this is "linearised"

(actually it is, of course, already linear) to
L

dE. = £. - &,
i
where zi and £§ are the observed and approximate eastings.

(ii) Similarly for northings

Now returning to the problem in hand we have ten observations and four

parameters; using the usual notation we can write
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=1.]

Bd"

£ = [d15 dog 935 926 936 Y46 955 %56 Es Ns]T

T
X = [dES dNS dE6 dNGJ
and we will have ten observation equations of the form
'Fi(X) = £l

Then using the follouwing for approximate values of §, i.e. x°

£ N
255086.5 m 964173.1 m
6 253717.3 965605.5

and using the general forms of the necessary differentials already developed

we can write down directly the observation equations (2.22) as follous

[ 0.439 0.899 0 S r'dss"' ™ 2.38 7] [0
0.798 0.602 0 0 i -3.64 v,
0,990 0.142 0 0 dE, -0.39 v,

0 0 0.788 0.616 || g | ~0.67 v,
0 0 0.988 0.153 7.16 v
0 0 0.990  -0.140 g 5.53 | + | v,
0.691  -0.723  =0.691 0.723 -0.01 v,
~75.248 -71.904  75.248 —71.904 _ 4.69 Vg
1.0 0 0 0 0 Vg

B, 0 1.0 0 o ] i D b i UlD_

with a ten by ten weight matrix whose diagonal elements are
0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 2500, O,11, D,11, O.11.

Then, using (3.41), we write the normal eguations as

£ = v ld
where . -
182,257 -64.750 -182.238 64.754
N o= -64.750 188.136 64.754  =188.120
-182.238 64,754 182,245 -64.752
64.754 -188.120 -64,752 188,122
and - -
d = [—62.661 -13.033 63,052 13.025]T
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with solution
Q:[}..m -0.56  1.51 -0.54]T

Hence the least squares estimates of the coordinates of stations 5 and 6 are

E5 = 255086.5 + 1.47 = 255087.97
N5 = 0964173.1 - 0.56 = 0964172.54
EG = 253717.3 + 1.81 = 253718.81
N5 = 965605.9 - 0.54 = 965605.36

In practice we would now take a neuw x° equal to the above estimates and repeat

the computation until X was insignificantly different from a null vector.
The least squares residuals are computed from (3.43)

EEy
4.47
1.76
= A-b = | 152
-5.75
-3.96
0.00
0.02
1.47
-0.56

e —

and the unit variance is given, from (4.25), as

ci = AW/(n=n) = 0.573

To check if this is significantly different from unity we compute, following
5.4.2.2, the F statistic

Fe 5 = 1/b§ = 1.745 (note that there are 6 degrees of freedom)
?

Then using a level of significance of 0.10 we find that, from Table 5.5, the

critical value of F is 2.10 so we can accept the hypothesis that the unit

variance is not significantly different from unity (note that Table 5.5 is

entered with @ = 0.05 as we are carrying out a two~tailed test).

To test for blunders we compute the covariance matrix of the residuals,l%r

from (4.68)
ey = - an—tal

and extract the square roots of the diagonal elements to obtain
OA -3 TA ... OA .
iR V10
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Paul A Cross- UCL

These are listed below along with the w statistic computed from (5.25)

5 . a
observation residual (7) it u

distance 1 - 5§ -2.23 m 4,50 m 0.50
2-5 4,47 4,63 0.96
3 -5 1.76 4,63 0.38
2 -6 1.52 4.63 0.33
3 -6 -5.75 4,63 1.24
4 -6 -3.96 4,55 0.87
B = G 0.00 0.00 1.54%
azimuth 5 -6 o¥o2 o%02 0.97
eastings 5 1.47 m 2,30 m 0.64
northings 5 -0.56 1.70 0.33

*Note that the computations have been carried out to more digits than have

been displayed.

To test for blunders in the observations we first choose a level of
significance, say 0.01 (99% confidence level), and obtain a critical value
of w from the normal distribution tables (Table 5.2) of 2.57. Since all
values of the w statistic are less than 2.57 we can accept, with a 0.01
probability of making a type I error, the null hypothesis that none of the
observations contains a gross error. Alternatively we could compute the tau
statistics from (5.28). The largest is

i
T, = 1.54/(0.573)%? = 2.03

which is less than the critical value of 2.33 given in Table 5.6 for 10
observations and 6 degrees of freedom. Hence we reach the same conclusion
and do not reject any observations as blunders at the 0,01 level of ¥

significance.

The precision analysis now proceeds as follows. UWe first compute the
covariance matrix of the parameters using (4.67), i.e. by inverting the

normal equations matrix

3.76330 -1.29788 3.76307 -1.29799
-1 -1.29788 6.14226 -1.29789 6.14222
Ca = N =
R 3.76307 -1.29789 3.76345 -1.29779
-1.29799 6.14222 ~-1.29779 6.14278
(a3,2)
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Absolute error ellipses

The absolute error ellipse at station 5 is obtained as follows. From (4.76)

tan 2§ 2 (-1.298)/(6,142-3,763) = -=1.091
= 6623 or 15603

Then using (4.74) and (4.75)

ei ~ cos%66.3 6.142 4 sin66.3 3,763 + 2 cos 66.3 sin 66.3 (-1.298
S e = 1,787
p
and 5
ci = cos?156.3 6.142 + 8in“156.3 3.763 ~ 2 cos 156.3 sin 156.3 (=14
¢ = 2.591
a]

Hence Gq is the major axis (it is larger than cp) and the error ellipse is as
follouws

(=]

o = 2.89m, @ . = 1l.78m, Y = 156
max min max
Similarly the error ellipse for station 6 is
c = 2.59m, © . = 1.78m, { = 156
max min max

Relative error ellipse between stations 5 and 6

Using (4.106) we have

ai = 6.14278 + 6.14226 — 2(6.14222) = 0.00060
c§ = 3.76345 + 3.76330 = 2(3.76307) - 0.00061
°xy = (-1.29788) - (-1.29789) - (-1.29799) + (-1,29779) = 0.00021

Then applying (4.76), (4.74) and (4.75) gives the relative error ellipse as

) = 0.029, © ., = 0.020, ¥ = 46°
max min max
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Standard errors of derived quantities

For the distance d between stations 5 and 6, for example, the vector ﬁ in

(4.107) becomes a single element, say 3, where

n ~ noLD "N A 2 %
d = [(E; = EZ)™ + (Ng = N)7]

and the matrix B in (4.109) is the vector b, where

od 4 »d »d

b = ’ y  mp ?
.298) bE5 bNS bE6 bN6
A
_ [Aﬁ AN AE A
S LT &Y a4
( . where
-1.2 A ~ n A N A
! AE = ES = E6 and AN = N5 - Nﬁ
A A A
Substituting the least squares solution for AE, AN and d we obtain
b = [0.691 -0.723 -0.651 0.723]
and using (4.110) with CQ as given in (A3.2) we obtain
o5 = 0.00040 = (0.020)°
Hence the standard error of the least squares estimate of the distance 5 to 6
(as derived from the least squares estimates of the coordinates of stations
| 5 and 6) is 0.020m.
% Similarly the following standard errors of distances and azimuths have been
computed after linearising the relationships
60 | A _ =, ~ -f‘\ ~ _r’\
@ = tan [(Ej Ei)/(Nj Ni)]
161 and =1 N ~ A ~ =1 fa) ‘/\
- B(angle 6-5-2) = tan [(E6 - ES)/(Ns - NS)] -~ tan [(E2 - ES)/(NZ = NS)]

The results are tabulated below.

Stations Standard error Standard error
from  to of distance _ of azimuth
i 5 2,16 m 54

2 5 1.84 4,6

3 5 1.86 3.6

4 5 2.05 H ]

X 6 2.18 5.3

2 6 1.85 4.6

3 6 1.85 3.6

4 6 2,04 3.4

5 6
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Furthermore the standard error of the derived angle at station 5 between
stations 6 and 2 is 5%5.
Reliability

Consider the first observation, i.e. the distance between stations 1 and 5.

Then using (5.33) with i = 1 we have

Tl = Ul/cﬁ
i3
where ¢, = 5.0m (the given standard error)
and UG = 4,50m (already computed and listed earlier with the residuals)
) i
then T, = 5.0/4.50 = 1.11

Now to consider the probability of making a type II error and accepting a
gross error of four times its standard error (i.e. 20m) we proceed as follous.

Using (5.32)

20 = 6. 5.0 1.11
= i
giving i
éi = 3.60

But from (5.20) with o = 5% and a = 1.96 we have

3.60 1.96 + b

1l

giving

b = 1.64
Then from Table 5.2 we see that a value of b of 1.64 corresponds to a
probability of 0.9495 (approximately 0.95). Hence we are 95% sure of
rejecting the first observation if it has a blunder greater than or equaf to
four times its standard error. Conversely there is only a 5% chance that an
accepted observation has a gross error greater than or equal to four times its

standard error.

The effect of an undetected blunder in the first observation on the derived
azimuth between stations 1 and 5 is investigated as follows. First we compute
y, from (5.40) )

2 2
1. & %

1l
-~
'_l
L
l_l
i
S
N
I
[
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w

giving

Y 0048

l =
Then, using (5.36) and the already computed standard error of the azimuth

from 1 to 5,

Fal

Ay 3.6 0.48 514

]

= 93

Hence the maximum effect on the derived azimuth 1 te 5 of a blunder in the

first observation of four times its standard error is 993,

Similar computations with all other observations lead to the following table,
in which the observations are listed in the same order as they were given in
the problem. Note that P is the probability of rejecting an observation with
a blunder greater than or egual to four times its standard error and A$ is
the maximum effect of such a blunder (if it uas undetected) on the azimuth

between stations 1 and 5.

’

Observation T factor Y factor P AY
1 s 1 D.48 0.95 i3
2 1.08 0.40 0.96 8.0
3 1.08 0.40 0.96 8.0
4 1.08 0.40 0.96 8.0
5 1.08 0.40 0.96 8.0
6 1.10 0.45 0.95 8.8
i 308.90 308.90 0.03 20.0
8 148.87 148.87 0.03 21.7
9 1.31 0.85 0.86 14.0 '

10 % 1.47 0.62 17.9

From the above we can draw the obvious conclusion that measurements 7 and 8
have extremely poor (effectively non-existent) internal reliability and
rather poor external reliability, i.e. large blunders in these observations

may go undetected and seriously affect the resulting least squares estimates.
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A3.3 Special case of condition equations

Fig. A3.2

The following observations are made in the above triangle:

angle «

40° 18' 16" (5")

B 106 54 21 (5")
Y 32 47 40 (5")
distance d 625.64m

(0.05m)

Given the coordinates of A and B as

E N
A 10417.62 55061.78
B 10645.28 55333.09

find the least squares estimates of the coordinates of P and their standard

ETITOIS.

¥

Paul A Cross- UCL

Note that this problem is, in practice, more easily treated using the special
case of observation eguations and the reader is invited to do this and check
that the solution is identical to what follows. Here, in order to show how
the condition equations method can be applied to two-dimensional position-

fixing problems, it will be considered as an example of the special case of

condition equations.

The vector of observations 4 is given by

& = [aBYd]T
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Since there are 4 observations and 2 parameters
we see from the table in 2.4 that there will be (4-2)

putting the known distance AB as a, we can write these:
+B+Y-180° = 0

d/sinB - a/sin¥ 0

From (2.18) we write the matrix C as

1] —# d cotP cosecB pacotYcosecy cosecf

where p = 1/206265" and converts the units to agree with U-l;

evaluated as

C is

0 0.0008635 0.0049203 1.0452

with a = 354.173

The vector b is given by (2.16) as
@+ B+ Y- 180
d/sinB - a/sinY

[ which is evaluated as

‘ —_—

| 17
0.007

, Also from (3.7) we have

28 D - 0 0
D
w‘l ~ 0 25 0
- 0 0 25 0
_U 0 0 G.DUZS_‘
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From 3.2.2 we write the normal equations as

(cwlehHhk = -b
with
-
75 0.1471
(cu™ich) =
0.1471  0.003359
and :
17
o
~0.007

which leads to a solution for Q

0.2525

N
PT
~13.14
Then using (3.44)
5.3
N -5.0
v b —
—4,7
| 0.034]
and using (4.50)
Fo
4 = L+ G
we obtain
. .
o = 40° 18! 09%7
B = 106 54 15.0
Y = 32 47 35.3
8 = 625.674m

which are the least sguares estimates of the observed quantities.

Now if we let B be the bearing of the line AB computed from the known

coﬁrdinates of A and B we have
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® = 40° Dot 1773

and the least sguares estimates of the eastings and northings of P are

—Egﬁ E, + d sin (8 + &) 11034.35
9 - — = —
A 4] o
Np N, + d cos (6 + @) 55167.17

A% 7S
To compute the standard errors of Ep and Np we must first compute Cﬁ using

(4.71). This involves some lengthy matrix manipulations using the matrices

C and w‘l with the result

15.881 -8.734 -7.154 0.0416

-8.734 16.462 ~7.735 0.0212

‘D7 | s =7.735 14,882 -0.0629
0.0416 0.0212 ~0.0629 0.000261 |

Then in order to apply (4.113) to obtain the standard errors of the

coordinates Ep and ﬂ we need B from 09/53:

p
B dE dE S
—B it —B —B
da 0B dy dd
B =
N o il o
—B —r R, - —E
da 08 dY od
Hence .
d cos (B + &) 0 0 sin (8 + @)
B =
-d sin (8 + &) p 0 i cos (B + @) '

which can be evaluated as

0.000511 0 D 0.9857

0.002590 0 0 0.1684

Then using (4.113) whilst remembering that

Il
|
mp»
o
2
0
| I
._l

9
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we have

‘0.000320 -0.000097

and the required standard errors are

e 1
op = (0.000320)2 = O0.018m
P
cﬁ = (cn.l:lutllna)‘lf = 0.010m
p

Notice that error ellipses and all the usual precision and reliability

information could be computed if required,

A3.4 Seguential least sguares

Fig. A3.3

The following five height differences have been observed between the four
stations in Fig. A3.3. Note that the number in brackets after each

observation is the approximate length of the level route in kilometres.
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Stations Observed height
from to difference

0 1 61.478m (10)
1. 2 16.994 (15)
2 3 -25,051 (9)
3 0 -53.437 (18)
0 2

78.465  (20)

Given that the height of station 0 is 214.880 metres above datum and that the
1

standard error of an observed height difference is 0.005 (d)2?m, uwhere d is

the length of the level route in kilometres, compute the least squares

estimates of the heights of points 1, 2 and 3 and their standard errors.

Now if, at a later date, the height difference from 1 to 3 is observed to be
-8.070m (length 22) determine new sets of least squares estimates and

standard errors.

Let £ be the true values of the observed height differences and

- = T ' ;
X = [xl iz 23] be the true values of the heights of stations 1, 2 and 3.
Then we can write down the observation equations, F(X) = Z as
-214.880 +Xq = £1
—X; Xy — Lz
Xy HRg = 33
-214.880 X, = A, ;
-214.880 +X, = £5
Then putting
- - = -
x? 276,358
1
o s}
= X%, = 293,345
Xo 268.317
- 3—- —_ : o

and applying (2.17) and (2.16) we obtain (2.22)
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where
= — - —
i 0 0 0.000
-1 1 0 0D.007
A = 0 -1 i b = -0.023
D 1 0.000
o 1 0] | 0.000 |
with, from (3.7),
4000 0 0 0 o
0 2667 0 o 0
U = | o 0 4444 0 0
0 0 0 2222 0
0 0 0 0 2000

Then, following 3.3 we have the normal equations

6667  —2667 0 Ql -18.667
~2667 9111  -4444 §2 - | 120.889
0 ~4444 6667 Qz ~102.222
which using (4.67) leads to
[ 0.0008
% = | 0.0089
| -0.0094
and
[ 0.000181 0.000079 0.000052
Cy = | 0.000079 0.000197 0.000131
| 0.000052 0.000131 0.000237 ,

The least squares estimates of the heights are then given by x° + % and their

standard errors by the square roots of the diagonal elements of Cg, i.e,

station height standard error
1 276,359 m 0.013m
2 293,354 0.014
3 268,308 0.015

Now to implement the sequential least squares process we proceed as follouws.

First we use the previous results, and following the notation of 7.2.2 we put
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A A
xl=xand CleNl =CQ

Then we have the additional (sixth) observation equation as

fE(X) = X. — X, = 4

. [—1 0 1] 5 B, = [-0.029]
it [0.00055]

Hence we can compute

giving

b3
Il

T B
ANITA, = 0.000314
=1 AT
W™+ AN A, = 0.000864
;| sl Tl
(u2 "3 A2Nl A2) = 1157
N
A%y = =0.01015
A
A%, - b, = 0,01885
~0.000129 |
= I §
NJ"A, = | 0.000052
0.000185
-0,00281
-1 T{ -1 =1, T\=1,, & } _
N A, (u2 + AND A2) (Ale - b2) = 0.00113
0.00404

Hence using (7.19) the new value of X is

0.00076 -0,00281 0.00357
Qz = 0.00891 = 0.00113 5 0.00778
-0.00939 0.00404 -0.01343

To obtain the new covariance matrix we compute

il s, el R 1 N, |
N7 Az(m2 - AN AZ) AN

<
1
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-0.0080128 [ilS?J [fG.DDDIZQ 0.000052 DnDDDIBSJ
= 0.000052

|_0.000185

[ 0.000019 -0.000008 -0.000027
= -0.000008 0.000003 0.000011

_:U.DDUDZ? 0.000011 0.000040

which, following (7.34), is substracted from Cs to produce

i
0.000162 0.000087 D.DDUDBd_
CQé = 0.000087 0.000194 0.000120
0.000080 0.000120 0.000198

Hence we have the following least squares estimates from the combination of

all six observations:

station height standard error
1 276.361m 0.012m
2 293.353 0.013
3 268.303 0.014

The reader can check in straightforward fashion that the above solution is
identical to one derived from a simultaneous computation with all six

observations.

A3.5 Step by step least sguares (Helmert-Wolf method)

1 L P

Fig. A3.4
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A point P is fixed by the following distance measurements from known points
1, 2, 3 and 4.

Paul A Cross- UCL

1 - P 8622.45m with standard error 0.5m
2 - P 3069.72 0.2
3 - P 6725.24 0.2
4 - P 12138.96 0.5
The known coordinates are
Station Eastings Northings

1 24433.11m 71200.85m

2 30375.90 70319.63

3 30813.54 65515.77

4 23146.72 64817.22

Some time later a new set of measurements are taken from stations 1, 2, 3 only

with the following results:

1 - P B624.18m with standard error O0.5m
2 - P 3070.80 0.2
3 - P 6726,92 0.2

Assuming each set of measurements is subject to different unknown systematic
scale errors s and S, respectively, use the Helmert-Wolf step by step methed
to determine the least squares estimates of the coordinates of P without
explicitly determining s; and Sye Determine the standard errors of these
estimates.

(Note that these two different scale errors may arise in practice because of

different meteorological conditions for the two sets of measurements.) ~

First we write down the general functional model for an observed distance
between stations P and i at the jth epoch
£ = R
L — [(E -+ @ -n)’F-0, =0
(1-107s.) R 3
where
is the true value of the scale error at the j thepoch (in ppm)

ol

is the true value of the distance between i and P

3 ﬁb are the true coordinates of P

, N. are the known coordinates of the ith station.
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The differentials required to form the A matrix can then be approximately

evaluated as

d

Bs.
J

bf
dE
p

o
dN
P

=

)
—

I

10"6 G,
€L
0
(E” - E )/C;
0
(N~ = Ni)/ci

where E° and N° are the approximate values of E and N_ and
o 2 o 2]%
C; = [(E - B+ - N, )

Using the above, and taking approximate values of the coordinates of P as
33028,77 E and 71865.58 N, we proceed as follous.

Epoch 1

Observation equations are written as (2.22) with

and

~0.73
0.11
| 0.83

—1.137

-
0.00862
0.00307
0.00673
0.01214
=

0.9970
0.8640
0.3294
0.8141

U.U??l—
0.5035
0.9442
D.SBU?J

with x = [Sl idEp de]T, which are partitioned according to (7.45). Also we

have from (3.7)

—

O o o &

25
0

& O O O

which leads to the normal equations, partitioned according to (7.51),
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0.002255 ' 0,1956  0.2282 %1_ | 0.042
0.1956 | 28.002  20.850 dfp = <7855
A
0.2282 :20.850 29,998 dN -4,316
These are reduced, following (7.52), to
~
11.036 1.056 ‘ dfp _ -11.296 (A3.3)
1.056 6.905 de -8.563
Epoch 2
Observation eguations are written as (2.22) with
0.00862 : 0.9970 0.0771 2.86
A = 0.00307 | 0,8640 0.5035 b = |[0.35
|
0.00673 1| 0.3294 0.9442 1.79

|
with x = [82 ldEp de]T. They are partitioned according to (7.45). Also
we have, from (3.7),

4 0 0
U = D 25 0
0 0 25

which leads to normal eguations, partitioned according to (7.51), of

0.001665 | 0.1561  0.2002 | | 8 0.4266
0.1561 | 25.351 18.959 dEp = |33.706
1
0.2002 | 1B.959 28.649 dN 47.541
These are reduced, following (7.52), to .
10.718 0.192 gfp _ -6.285 (A3.4)
0.192 4.580 de_ -3.767

Combination of epochs

Summing (A3.3) and (A3.4), as in (7.53), yields

~
21.753 1.248 | |dE_ -17.581
1.248 11.485 dﬁp -12.330

(A3.5)
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with solution dEp = =0.751 and dﬁp = -0.992. Hence the least squares

estimates of the coordinates of P are

33028.77 - 0.75 = 33028.02
71864,59. - 0.99 71864.60

2> m>
o
1}

I
I

p

The covariance matrix of these estimates is obtained from (7.59) by inverting
the left-hand-side matrix of (A3.5)

0.0463 -0.0050
be = |_p.ooso 0.0876
Hence
op = (0.0453)% = 0.22m
P 3
o = (0.0876)%2 = 0.30m
P

The scale factors can be obtained by use of (7.56), viz.

Ql = (1/0.002255)(0.042 - [0.1956 0.2282) [%0.75%] )
-0.982
= 184 ppm
Similarly
@2 = 444 ppm

Readers are invited to check that the above results are exactly equivalent to
a full simultaneous least sguares computation by carrying out the latter, i.e.
by making one single computation with seven observation equations in terms of

four parameters.

A3.6 The Kalman filter

v

This example follows exactly the navigation problem outlined in B8.4.1 and
uses identical notation. Note that the Kalman filter is recursive and takes
some time to settle down in practice., Here we enter the process after the
i=1th recursion and simply illustrate the numerical procedure by carrying out
one complete set of computations for filtering, smoothing and prediction.

The numbers have been arbitrarily chosen and are not supposed to represent any
particular navigation system. Also more digits than are really meaningful
have been quoted to enable the reader to check his own computations more

easily.
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The following information is given (linear and time units are metres and

seconds respectively throughout).

Standard deviation of ship's (assumed) random acceleration (¢) = 0.0002
Fix interval (At) 60

Covariance matrix of each position-fix (U;l):

N 91.6  42.7
oL o

b 42.7 91.6

Then, using (8.71) we obtain

0.1296 0 0.00432 0 )
ual _ 0 0.1296 0 0.00432
0.00432 0 0.000144 0
0 0.00432 0 0.000144
L -

Also we will take the following as the values of the state vector and its

covariance matrix resulting from the i-lth recursion

15969,933
e 25030.638
My T
2.92214
2.00528
and :
29,020576 11.740694 0.092973 0.029312
=1 11.740694 20.661862 0.029312 0.072305
Nl—l — Cf\x, =
i=-1 0.092973 0.029312 0.000655 0.000111
0.029312 0.072305 0.000111 0.000576

The results of the position-fix at the i th point (i.e. the observations as far

as the Kalman filter is concerned) are

E
N

= 16145,292

FOR O

= 25158.442
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Filtering

Using (8.51) with M, , . given by (8.66) we predict the state vector as
ey

1 o 60 o0][15969.933 16145.262
o _ o1 60| |25030.638 | _ |25150.955

A 0 0 2.92214 2.92214

o 0 2.00528 2.00528

From (8.52) we predict the covariance matrix

(42.66415  15.623718  0.136580  0.035686
co - -l _ |15.623718 31,540946  0.035686  0.111173
i) * 0.136580 0.035686  0.000799  0.000111
0.035686  0.111173  0.000111  0.000720

We next campute‘the gain matrix using (B.53) with Ai given by (B.65)

-_0.336512 -0.043163

C = -0.043163 0.367242
0.001170 -0.000351
|-0.000351 0.001419

The least squares estimate of the state vector is then computed

16144.949 eastings
- 25153.703 northings
" 2.91955 east velocity
| 2.01590 | north velocity

with a covariance matrix given by (8.55)

28.981496 11,727531 0.092159 0.028476 |
cn o (11727531 20.632154 0.028476 0.071886
%y 0.092159 0.02B8476 0.000652 0.000108

| 0.028476 0.071886 0.000108 0000575 |

from (8.54)

which can be seen to be virtually identical to the covariance matrix for the |
filtered state vector at point i-l. This is to be expected because once the

filter has stabilised the precision of the state vector will only change very

slowly.
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Prediction
To predict the state vector at point i+l we use (8.59) to yield

(16320, 122 |
25274 .657
2,91955
| 2.01589 ]

the covariance matrix of which, if required, could be computed from (B.60).

Smoothing

Although in practice it would not be usual to do so at this stage it is
possible to compute the least squares estimate of the state vector at point

i-1 using all data up to and including point i.

A
First we compute ks from (8.58)

0.047942
-0.110881

N
KL, =
L

then we obtain X, . from (8.57)

15970,097
A 25028,513
X l=
ik 2.92453
1.99515

Exercise

The reader is invited to verify that if, at point i+l, we have observatisns
of

9 = 16324.026
i+l
9 = 95296.678
i+l

then the filtered, predicted and smoothed results at points i+l, i+2 and i
respectively would be
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16321.346
25275.228
2.92338

2,01738

16496.748
25396,272
2,92338

2,01738
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16143,952
25153.220
2,91584

2.01444 |
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