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Abstract 

Position-fixing in both the l and and marine environment invol ves two equally 
important operations: the mathematical combination of the obser ved data t o 
produce estimates of position, and the study of the errors i n t he measurement s 
and their propagation through the computational procedure in order to yield 

the quality of the estimated positions. The usefulness of t he results of both 
operations is largely dependent on the sophistication of the processing 

methods employed and the current trend is to use increasingly more complicated 

mathematical procedures. 

This Working Paper is concerned with a family of techniques, known general l y 
as least squares, which is now almost universally used f or modern position-

fixing. The object is to provide a rigorous mathemat ical background to l eas t 
squares methods and, at the same time, to identify a number of current , a nd 

possible future, applications in the field of position-fixing. Readers are 
assumed to be conversant with matrix algebra but no prior knowledge of 
statistics or least squares, or of the general position- fixing methodology, is 

assumed. 
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Notation 

The notation below refers to the general usage of symbols throughout the 
Working Paper. Where a symbol has only a special localised meaning it is 
defined in the text and not included in this list. 

b 

e 

e. 
1\~ 
k 

.t 

] 

~ 
m 
n 

r 

s 

V 
A 
V 

-
X 

0 
X 

X 

vector of absolute terms in a linearised mathematical model 

vector of true errors; eastings in 2.5.2 
null vector except for the ith element, which is unity 

least squares estimate of the vector of correlatives 
vector of observed values 

true values of the vector of observed quantities 

least squares estimate of 1 
number of parameters 

number of observations; northings in 2.5 . 2 

number of equations in a pos3tion-fixing mathematical model 

scale error or sample standard error (section 5) 
true values of the vector of residuals 
least squares estimate of v 

true values of the vector of parameters; mean value (section 5) 
approximate values of x 
true values of the corrections to x0

, x = - 0 x-x 
~ least squares estimate of x 

A,C design matrices 
C covariance matrix of the vector of variates y 

y 
E eastings 
E(y) expectation of y 

G Kalman filter gain matrix 
H

0 
null hypothesis 

HA alternative hypothesis 
I unit matrix 
M transition matrix (section 8) 

N northings or ATWA 

P(a~y~b) probability of y being in the range a to b, sometimes written 
P(a,b) 

a probability of type 1 error (section 5) 

~ probability of type 2 error (section 5) 

ix 
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vector of mean values 
degrees of freedom 
standard error; standard error of population (section 5) 
standard error of y

1 

covariance of y1 and y2 

variance 
unit variance 

The following general points apply to the use of matrix algebra. 

(i) Upper and lower case letters (usually Roman) are used for matrices and 
vectors respectively, e.g. Y is a matrix and y is a vector . 

(ii) Individual elements are denoted by subscripts, e.g. Y .. and y . are 
1J 1 

elements of Y and y respectively. 

(iii) YT, Y-l and Tr(Y) are the transpose, inverse and trace of Y respectively. 
. -1 The inverse always refers to the Cayley inverse, 1.e. AA = I. 

X 
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1 • ~ntroduction 

Position-fixing is concerned with the determination of the coordinates of 
points on (or possibly above or below) the earth's land and sea surface. ·It 
is an activity that is central to the geodetic sciences and one that is 

required for innumerable purposes. Sometimes single points are fixed, e.g. 
for navigation and in the provision of photogrammetric control, and at other 
times groups of points are fixed simultaneously, as in engineering and 
national control networks. 

having the following steps: 

(i) design 

(ii) measurement 

It is convenient to consider position-fixing as 

(iii) mathematical modelling 

(iv) estimation 

(v) analysis. 

The design stage involves decisions upon which measurements to make; often 
these will be limited by practical considerations but in principle there is a 
vast choice. Nowadays instrumentation is available to measure a multitude of 
physical quantities ranging from the traditional angles and distances to 
frequency shift (e.g. satellite-Doppler), time delay (e.g. from quasars in 
very long baseline interferometry) and vehicle acceleration (e.g. inertial 
surveying). The object of the design stage is to select a set of measurements 
that will yield results of the desired quality with the minimum cost. Once 
the measurements have been made it is necessary to set up a mathematical 
model relating the required coordinates and the observations. At this stage 
the physics of the measurement process and the chosen reference system (~d 
other aspects of geodesy) are taken into account. For instance, if a plane 
surface mathematical model is used, a distance observed by EDM must be 
"projected" from the earth to a plane surface via models for both the 
atmosphere and the reference ellipsoid. 

The fourth stage is the statistical estimation of the coordinates and this is 
of crucial importance if the best possible results are to be derived from 
the measurements. This point is illustrated by the fact that the massive 

improvement in the quality of inertial surveying and satellite-Ooppler results 
over the last ten years is entirely due to advances in the adopted processing 

- 1 -
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methods (the instrumentation has hardly changed). Also, the major errors in 
many national triangulation networks, eog. in Great Britain, have been largely 

eliminated simply by reprocessing the old observations (perhaps along with a 
few new ones). Fortunately, the current availability of relatively inexpensive 
computers means that it is possible to apply sophisticated processing methods 
to almost all position-fixing measurements. The essence of the argument here 
is that since it is so expensive and time-consuming to make position-fixing 
measurements, they should be given the best . possible treatment. 

The final stage, the analysis of the quality of the fix, is, in a sense, the 
most important. Indeed, it could be argued that coordinates are of no value 
without some measure of their quality because it would not be known whether or 
not they were suitable for their intended purpose. The quality of a position-
fix is a measure of the probability of its containing errors of a specified 
size (or the size of an error that can be expected with a specified 

probability). Since it is usual to class errors in surveying under three 
headings - random, gross and systematic - it follows that quality must be 
measured under all three headings. In the cases of random and gross errors 
the terms precision and reliability are used when assessing the quality of a 
position-fix. 

This working paper is concerned with the mathematical aspects of the foregoing 
stages (iv) and (v), and to a limited extent stage (i). It is essentially a 
presentation of a universal methodology far estimating, and analysing the 
quality of, coordinates (and possibly other quantities relating to the 
measuring systems and the chosen mathematical model) from any set of 
measurements. It is important to emphasise at the outset that the method, 
known to surveyors as least squares, is completely general. In principle it 
can be applied to all position-fixing problems irrespective of the dirnen~ions l 
of the problem, the number of points being fixed and the number and type of I 
observations. Also,it applies to problems either homogeneous or heterogeneous 

I 
with respect to the types of observations included. Emphasis throughout this 
paper will be placed on theory, the main object being to provide readers with 
a set of "tools" which they can use to solve their own position-fixing 
problems. Some examples ha've been included but these are to illustrate eithe! 
specific detailed paints in the text or the breadth of the applicability of a 
particular "tool". Their simplicity should not obscure the fact that the 
methodology can be applied to all position-fixing problems and in practice 
many are more complicated than any of the examples given. 

2 -
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As far as the position-fixing methodology is concerned, this paper is 
.y completely self-contained with every result being derived from first 

principles within the text, or, in two cases, in appendices. No prior 
.v knowledge of statistics is assumed and all statistical terms are defined 

before they are used. Cert n statistical formulae and results, e.g. those 
pertaining to the sampling distributions, are, however, not derived (although 
references containing the most relevant proofs are given). Readers are 
assumed to be proficient in matrix algebra and to be familiar with some 
standard mathematical results. 

To ensure the generality of the approach and the equivalence of the techniques 
Jr in various sections, some of the terminology may, in places, be slightly 
1- different to that with which most practising surveyors are familiar. For 

instance, the term "adjustment" will not be found in this paper. We prefer 
to speak of 11estimating coordinates" rather than "adjusting observations". 
This is partly because the work "adjustment" has no place in the language of 
statistics and partly because it has always been something of a misnomer 
since observations cannot be changed. Similarly, the work "accuracy" is 
avoided as it is not well defined for position-fixing problems and the two 
terms "precision" and "reliability" are preferred. 

ng ! The title of this paper claims that the subject matter is advanced. Whether 
or not this is the case is, of course, a matter of opinion. Certainly much 
of it, especially the statistics, is very elementary, but the word is used 
because the treatment of least squares is more advanced than that usually 
presented to first degree (i.e. bachelor's) land and sea surveying students 
in Great Britain (with the possible exception of those who may specialise in 
photogrammetry or geodesy). 

IS 

JUS 

.s 

:h 

1er 
a 

r 
r 
I 

I 
I 

In order to explain how the various sections of this paper fit together end 
how they relate to the overall objective, a brief summary of the contents 
will now be given. Section 2 considers the general form of the position-
fixing mathematical model and its linearisation ready for the application of 
least squares. Then in section 3 the method of least squares is introduced 
and applied to the linearised general mathematical model. The precision of 
position-fixing observations and of the results of the least squares 
computation described in section 3 are discussed in section 4, which includes 
derivations of all the relevant covariance matrices. Section 5 considers 
methods for the statistical testing of the results of a least squares 
computation. This is important for measuring the reliability of a position-

3 -
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fix and can give useful information on the poss i bilities of systematic errors, 
the completeness of the model used in section 2 and the correctness of the 
covariance matrices assigned in section 3. Secti on 6 uses the s tati stical 
terminology introduced in sections 4 and 5 to j usti f y the l east squares method 
used in section 3. 

Section 7 looks at methods for dividing large least squares problems so that 
they may be handled on modern microcomputers. These methods are especially 
important nowadays as many modern measuring systems prod uce vast amounts of 

data which need to be processed simultaneously, and many appl i cations requi re 
large numbers of points to be fixed simultaneously . It should be emphasised 
here that this paper is not concerned with computer met hods as s uch: only 

the mathematical aspects of dividing the problem ar e considered. Si milarly, 
methods for solving systems of linear equations and inverting matrices are 
not considered. 

A number of position-fixing problems, e.g. navigation at sea and inertial 
surveying, involve parameters (especially position) which vary with time. The 
general treatment of such problems belongs to the areas of mathematics known 
as filtering, smoothing and prediction and the principles of these are 
outlined in section B, which includes a derivation and di s cussion of a 
technique known as Kalman filtering. Section 9 is devoted to the problems of 
least squares interpolation and collocation. Although these are not usually 
used to determine positions directly they are included here because (a) they 
belong to the same 11 family 11 of least squares methods as those discussed in t he 
rest of the Working Paper and (b) they have indirect applicati ons in position-
fixing, e.g. in the determination and interpolation of coordinate 
transformation parameters. 

Finally, it is proper to make it clear that the intentions of thi s Working 
Paper are purely didactic and that it contains nothing new. Its contents have 
been collected from a large number of sources, most of which are referenced i n 
the text. Some works have, however, had such a great influence on the author 
that simple references are an insufficient acknowledgement of their i mportance 
and the following statements are considered necessary . Wells and Krakiwsky 
(1971) was used extensively whilst writing sections 2 and 3 and parts of 4 , 5, 
6 and 7. Pelzer (1979), Sunter (1966) and Gagnon (1976) were used for parts 
of sections 5, 6 and 7 respectively and section 8 is largely based on 
·Krakiwsky (1976). Section 9 owes a great deal to bot h Krakiwsky (1976) and 

- 4-
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::e 

5, 

MoritZ (1980). Although no specific references are made, Kennedy and 
Neville (1976) was found to be extremely useful when writing the statistical 

sections of the text. 
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2. A general mathematical approach to position-fixing 

2.1 The basic mathematical model 

The basic data from which all coordinates (and perhaps other parameters) are 
computed are the observations, so in all position-fixing problems it is 

logical to consider them first. Hence we begin by defining t as a vector of 
observations. t may contain such quantities as angles, distances, Doppler 
counts, time, phase differences, gravity, etc. In some problems we deal 
with homogeneous data, for example only angles in a resection or only 
distances in an offshore acoustic fix, but in general problems will be hater-
ogeneous and include a mixture of various types of observations. The true 
value of the quantities that have been observed are contained in a vector t 

where 

(2.1) 

or 

(2.2) 

and the vector e contains the true errors of measurement whilst the vector v 
contains the true residuals. Note that, although errors and residuals are 
the same but for a change of sign, in practice it is usual to work with 
residuals and hence to use (2.2) rather than (2.1). 

Usually it will be required to estimate a set of parameters (with true values 
x) from the observations ~. These parameters may well include quantities 
relating to the observations (e.g. scale errors in EDM, frequency errors in 
satellite-Doppler, etc.) and to the coordinate system (translation parameters, 
scale factors, etc.) as well as the coordinates themselves. 

There must always be a known mathematical relationship between the true • 
values of the observed quantities and those of the parameters. This 
relationship constitutes the basic mathematical model and is expressed as a 
general vector function 

F <><, I) = o (2.3) 

Note that a vector function simply means a set of r equations 

- 6 -
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f
1 

ex, '1) = o 

f 2 ex, :l) = a 

f ex, 1) = o 
r 

(2.4) 

Throughout this paper we will deal with problems where m parameters are to be 
estimated from n observations with a mathematical model containing r equations. 
Usually the problems will be redundant, i.e. there will be more observations 
than are strictly necessary to solve the problem and we will have 

With r-m being known as the redundancy or degrees of freedom. 

Examples of the functions f. (x, 1) in (2.4) are as follows: 
~ 

(2.5) 

(a) for an observed bearing, a, from unknown station 1 to unknown station 2 
using a plane coordinates model 

(b) 

(c) 

(2.6) 

where El, Nl, E2 and N2 would be part of X and a, part of ] 

-for an observed distance, d, with an unknown scale correction, s, and an 
unknown index correction, i, between unknown stations 1 and 2 using a 
plane coordinate model 

(2.7) 

where E1 , N1 , E2, N2, s and I would be part of x and d, part of 1 

for observed abscissa and ordinate (x. and y.) when estimating the 
~ ~ 

gradient (;) and intercept (~) of a "best" fitting straight line 

-c = 0 (2.8) 

where m and ~ constitute x,and x. and y. are part of 1 
~ l. 

(d) for the estimation of the angles of a triangle (al, a2, a3) from observed 

- 7 -
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angles using a plane surface model 

lBif = 0 

where al, a2 and a3 are part of 7 and there are no parameters. 

It is important to note the use of the overbar on all the elements of x and 1 
in the above four examples: the basic mathematical model applies to the~ 
values of the observed quantities and parameters. 

Some special features of the above examples are also worth noting at this 
stage. 

(i) Examples (a), (b) and (c) are non-linear equations whereas (d) is linea~ 
Note that, although it represents a straight line, (c) is mathematically 
non-linear due to the product mx .. 

J. 

(ii) Example (b) includes quantities other than coordinates amongst its 
parameters. 

(iii) Examples (a) and (b) could be rewritten in the form 

r. (x) 
J. = (2.10) 

and example (d) has no parameters and could be rewritten 

f. ('1) = 0 
J. 

(2.11) 

but example (c) cannot be simplified and must remain as 

f. (x, 7) = o 
J. 

(2.12) 

These three classes of equations are often referred to as "observation 
~ 

equations", "condition equations" and "combined case" respectively. 

2.2 Linearisation of the model 

- I For the practical estimation of x from (2.3) it is necessary to linearise the ~ 

basic model (unless, of course, as in example (d) in 2.1, the model is already, 
linear). In mathematics linearisation always necessitates estimating 
provisional (or approximate) values of the quantities involved. We already 
have an approximation of 7 since we know the observed values t, but we also 
require provisional values of x; let these provisional values be x0 and let 
- 0 x be related to x by 

- 8 -
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e 

lly 

y 

- 0 
X = X + X (2.13) 

where it is now necessary to estimate the small quantities x. Hence, if we 
substitute (2.13) and (2.2) in (2.3), we can write 

rcx, :t) = F{x0 
+ x, t + v) = 0 (2.14) 

and, applying the Tayl or seri es expansion to first differentials, we obtain 

rcx, :t) o bF bF F(x , t ) + -= x + -= v = 
bx ot 0 (2 . 15) = 

th t . 1 d · t. b F d where e par ~a er~va ~ves bx an oF o -= are evaluated at the points x and bt 
t respectively. It is important to note tha~despite t he lack of overbars, 
x and v are the true values of the corrections to the provisional values of 
the parameters and of the residuals respectively. 

Now F(x0
, t) is a vector which contains the r values of F(x, 1) computed at 

t he known points x0
, t. Let this vector be - b, the negative sign being 

introduced merely for convenience. 

Hence 

- b = 
(r x 1) 

f
1

(x0
, t) 

f 2 (x0
, t) 

(2.16) 

QI is a matrix of order r x m and is denoted by the letter A. The ith row 
ox 
will simply be the partial differential s of f . (x, 1) with respect to 

~ - - - Hence xl' x2, ... ' X . m 
of1 
ex1 
of2 
ex1 

A = 
(r x m) 

bf 
_f. 

ox1 

bfl 

ox2 . 
bf2 

ox2 

of 
_f. 

ox2 
• • 

- 9 -
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bF is a matrix of order r x n and is denoted by the letter C. 
bt 
The ith row will simply be the partial differentials of f . (x, ]) with respect 

~ 

to 11 , ]2, ... ' ] . Hence n 

of1 ~fl ~f 1 

~]1 o]2 ~] n 

bf2 bf2 bf 2 

c o:tl o:Z2 b] 
(2.18) = n 

(r x n) 

bf r 
b] 

n 

Matrices A and Care often referred to as design matrices and we can write 

(2.15) as 
Ax + Cv - b = 0 (2.19) 

which is the linearised version of the basic model in (2.3) . It is often 
referred to as the combined case as it is a combination of the following two 

special cases. 

2.3 Special cases 

2.3.1 Observation equations 

As mentioned in 2.1, if each equation in the basic mathematical model onl y 
contains one observed quantity, then (2 . 3) can be written as 

F(x) - :e = 0 (2.20) 
I 

with r = n. Clearly, if we differentiate the ith row of (2 . 20) with respect 
to ], we will get zero except for Ofl = -1. Hence 

o'Z. 
~ 

= c = - I (2.21) 

- 10 -
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et 

9) 

l) 

) 

and (2.19) becomes 

Ax - b - v = 0 

or 

Ax = b + v (2.22) 

which is the well known linear model for "observation equations 11 • 

2.3.2 Condition equations 

If f(x, 1) is formed without parameters, i.e. in terms of observations only, 
(2.3) becomes 

F(l) = 0 (2.23) 

with r ~ n - m. At first sight it may seem contradictory to state that t he 
problem has no parameters (m = D) and then to write r = n - m. Actually what 
is meant by m here is the number of parameters that would be used if the same 
problem were to be solved using observation equations. Clearly, if there are 
no parameters 

(2.24) 

and (2.19) becomes 

Cv - b = 0 

or 

Cv = b (2.25) 

which is the well known model for "condition equations". 

2.4 Summary of linear models 

The main features of the combined model and its two special cases can be 
summarised in the following table. 

-11-
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I 

~~ 

combined observation condition 
case eguations eguations 

mathematical model F(x, ]) = 0 F(x) = ] F(I) = 0 

no. of equations r n n - m 

no. of observations n n n 

no. of parameters m m .... 

linearised model Ax + Cv - b = 0 Ax = b + V Cv = b 

Interestingly, there is always a choice between the two special cases, i.e. 
if the combined model does not apply the basic mathematical model can be 
written down either as a set of observation equations or as a set of condition 
equations. In practice observation equations are usually easier to form than 
condition equations. This is because the procedure is more easily automated: 
one observation will lead to one equation. Hence condition equations are 
rarely used in practice although they may have some special computational 
advantages, especially when hand computation is used. 

This choice of model is illustrated by the following example of a level 
network. Note that the linearity of the problem and its geometrical simplicil 
mask the usual difficulties with condition equations . 

The observations are 

Let the parameters be the heights 
of the three unknown stations 
above the known point: 

The observation equation model F(x) 
(n = r = 5, m = 3) 

r
1

Cx, ]) = + xl 

f 2(x, ]) = - X 1 + x2 

r3Cx, l) = x2 

f 4(x, ]) = 
f 5(x, l) -= + x2 

2 

3 

= l will be the five equations 

- Ahl = 0 

-Ah 2 = 0 

- Ah 3 = 0 

+ x3 - ~h4 = 0 

-- x3 - ~h 
5 = 0 

- 12 -
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and the condition equation model F(l) = 0 will be the two equations 

(n = 5, r = 2) 

= ~hl + ~h2 

= ~h3+~4 

+~h 3 

+~h 5 

= 

= 

2.5 Examples of position-fixing models 

0 

0 

It has been shown that, provided the functional relationshi p (2.3) between the 
parameters and observed quantities is known, equations of the type (2.19), 
(2.22) or (2.25) can be derived for any position-fixing problem simply by 

differentiation. It makes no difference whether the observations are linear, 

angular, of frequency or of time (or any other quantity) , or whether one, 
two or three-dimensional coordinates systems are used: t he principles are 

exactly the same. To illustrate these principles three examples have been 
chosen, one each of the three cases - combined, observation equations and 

condition equations. Also, Appendix 3 contains numerical worked examples of 
~ each of the three cases. 

I 

~ n 
I 

2.5.1 Example of combined case 

It is usual when position-fixing using a satellite laser ranging system 
continuously to track the satellite and observe a very large number of ranges. 

It would be common to select groups of ranges d1 , d2, ••• , dr measured at 
times t

1
, t 2 , ••• , tr and reduce them to a single distanced at a specified 

time t. Such a procedure is often said to produce "normal points" on an 

orbit. 
RANGE 

- 13 -
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For ~his purpose it would be necessary to fi t a Gurve, say a quadratic of 

the form 
= 

where x
1

, x
2 

and x
3 

are the true values of the unknown parameters. Hence the 

basic mathematical model F(x, 1) is a set of r equations 

dl 
- x2t:l x3t:l 

2 
xl - - = 0 

d2 
- x2't2 x3t:2 

2 0 xl - - = 

a - x2tr 
- - 2 

xl - - x3tr = 0 
r 

with m = 3 and n = 2r and the linearised model will be 

Ax + Cv b = 0 (2.19) 

which must be solved for x and v. Note that in this example the vector of 

observations ~ can be arranged as 

. d t t lT 
~ = ~dl tl 2 2 ••• dr rJ 

and the provisional values, probably determined by fi t ting a curve to only 

three points, are 

xo = [xlo x2o x3o]T 

where 
- 0 
X = X +X 

Then, from (2.17) and (2.18), the design matrices are 

- 1 -t 1 
-t 2 

1 

-1 -t2 -t 2 
2 

A = bF = • 
(r x m) ex • 

-t -t 2 
- 1 r r 

and 

- 14 -
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L 

c = 
(r x n) 

with the vector of 

-b = 
(r x 1) 

bt 
bl = 

absolute 

dl 

d2 

d 
r 

1 

0 

0 

terms 

0 
xl 

0 
xl 

(-x2 
0 -2x3otl) 0 

0 1 (-x 

0 0 

given by (from (2.16)) 

0 
x2 tl 

0 2 
x3 tl 

0 
x2 t2 

0 2 
x3 t2 

2.5.2 Observation eguations example 

2 

0 

0 0 
2 -2x3 t 2 ) 

0 

Consider a point P of unknown coordinates E and N being fixed by distance 
measurements d1 , d2 , ••• , dr to a number of stations 1, 2, ••• , r with known 
coordinates E1, N1 , E2 , N2 , etc . If the di stances are thought to have a 
scale error s (due perhaps to the unknown velocity of propagation of the 
measurement signal), then there are three parameters (m= 3) to be deter mined 

and we have 

-X = 
r _ 
' E L 

- 15 -
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Assuming the distances to have been "projected" to the horizontal plane, the 
basic observation equation mathematical model F(x) - 1 = 0 can be written as 

the set of r equations 

[ 2 (- )2'i;- -(E - E
1

) + N - N1 J s - d1 = 0 

[(- )2 (- )2j't;- -E - E
2 

+ N - N
2 

s - d 2 = 0 

If we take provisional values 

and put 

o-;T 
s J 

the design matrix will be given by (2.17) as 

A 
(n x m) = 

(No - Nl)/(dloso) 

(No - N2 )/(d2oso) 

and the vector of absolute terms will be given by (2.16) as 

-b 
(n x 1) = 

- 16 -
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lS 

2.5.3 Condition equations example 

a 

A point P is fixed from two known stations 1 and 2 (with coordinates 
E1 , N1 and E2 , N2 respectively) by measurement of three angles a, ~ · and y 
and the distance d. Hence the vector of observations is 

= = 4 

If the problem were solved by the observation equations method there would be 

two parameters, the easting and northing of P. Therefore m = 2 and the number 
of condition equations, F(t) = 0, is 

r = n - m = 2 

These equations are found by inspection from the diagram and are 

~ + ~ + y - 180° = 0 

d/sin~ - a/siny = 0 

where a is the known distance between the two fixed stations. 

The design matrix is given by (2.18) as 

c = [-dcota!oseca 
1 1 

cos
0
eca] (r x n) 0 acotYcosecY 

and the vector of absolute terms is given by (2.16) as 

- 17 -
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et + ~ + y - lBcf 

-b = 
(r x 1) d/sin et - a/sin y 

Note that in practice this type of problem is usually more conveniently solved 
by the observation equations method because of the difficulty of automating 
the procedure whereby the condition equations are selected. This difficulty 
arises because it is necessary to examine the complete set of observations 
simultaneously in order to extract the condition equations whereas observation 
equations can be determined consecutively (each observation leads to one 
observation equation). 

- 18-



P
au

l A
 C

ro
ss

- U
C

L

3 ·The combined least sguares process . -
It has been shown that all position-fixing problems can be expressed as a 

system of linear equations 

Ax + Cv - b = 0 (3.1) 

from which the residuals, v, and parameters, x, must be determined; in other 

words it is required to derive expressions of the form 

X = fl (A, c, b) (3.2) 

V = f2 (A, c, b) (3.3) 

which satisfy (3.1). 

Clearly once (3.2) and (3.3) have been found we will be able to consider 
observation equations and condition equations as special cases by putting 
C = -I and A = 0 respectively. 

In practice there will usually be more measurements than are strictly 
necessary to solve the equations and, owing to observational errors, there will 
be an infinite number of possible solutions to (3.1). This point is best 
seen by looking at the special case of observation equations: 

Ax = b + v (3. 4) 

Here it would be feasible to choose any arbitrary set of values for x, say x*, 
and solve for v* from 

v* = Ax* - b (3.5) 

Hence any choice of x* leads to a set of residuals v* and unless the 
observations are perfect it will not be possible to "choose" the true value 
of x. So, whatever computational process is adopted, it can only produce an 

1 

estimate of x. 

In this paper we will use a computational process known as least squares and 
we will use the notation ~ and 0 to denote the least squares estimates of x 
and v respectively. 

The least squares estimates are defined as those which minimise a specified 

quadratic form of the residuals: 
T v Wv = minimum (3.6) 

where, W is the inverse of C~, the covariance matrix of the observations, 
i.e. 

- 19 -
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w = (3.7) 

The term "covariance matrix" is defined in 4.1 and the problem of assigning 
values to the variances and covariances in Ct is discussed i n 4 .2. It is 
worth noting here that the term "least squares" is used because in the special 
case where all observations are uncorrelated and have the same variance, cr2 , 

then 

w 1 = 2 I 
0' 

( 3.8) 

and the quadratic form (3.6) can be simplified to 

= minimum (3.9) 

and the "sum of the squares of the residuals" is minimised. A more correct 
description of the general case of (3.6) would be "minimum quadratic form" 
but the term "least squares" is universally used and will be retained for 
this paper. 

It ought to be noted here that many texts on statistics differentiate 
between least squares and weighted least squares, i. e . between vTv and vTWv. 
In this paper least squares always means the weighted least squares of 

statistics texts. 

This definition of least squares will now be used to derive explicit 
expressions of the form (3.2) and (3.3) for x and ~. Before doing so, however, 
it is necessary to outline the basic philosophi cal approach underlying this, 
and to mention an equally acceptable alternative. In this paper the least 
squares process is defined as in (3.6) and (3.7) and then in section 6 ite 
application will be j ustified by deriving, and then analysing, the statistical 
properties of the least squares estimates. It will be seen that least squares 
estimates are, in a certain sense, the "best" estimates G An alternative 
approach would be to define the statistical properties required of t he adopted 
estimates and then to derive expressions (3.2) and (3.3) to yield estimates 
with these properties . Clearly, if this approach were adopted, and if we 
started with the statistical properties of t he least squares estimates, we 

would in fact then derive the least squares process rat her than define i t as 
has been done in this paper. The approach adopted is not importan t , since 
expressions (3.2) and (3.3) will result in either case. 

- 20 -
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We now have a straightforward problem of mathematical optimisation, i.e. to 
find expressions for x and v which make 

T v l!lv = minimum (3 . 6) 

Lal subject to the constraints 

~ 

Ax + Cv - b = 0 (3 ol0) 

where A, C, b and W are all known. 

To solve this problem it is usual to use one of the standard methods of 

mathematical optimisation, called Lagrange's Method of Undetermined 
Multipliers. Lagrange showed that if we have a function ~ which must be 

optimised (maximised or minimised), subject to constraints ~l' ~2 , ••• , ~r' 

being zero, then the solution is found by optimising a function 

= (3.11) 

where p1 , p2 , ••• , pr are unknowns called "undetermined multipliers". A 
proof of this proposition is given in Krabs (1979, 179) and many other 
mathematics texts. 

For the least squares problem it is convenient to put p1 = 2k1 , p2 = 2k2 , etc., 
where k1 , k2 , etc. are called "correlatives". If we denote the vector of 
correlatives by k, then substitution of (3o6) and (3.10) into (3.11) gives 

which must be minimised. This is achieved by equating ·the partial 
derivatives of (3ol2) with respect to x and v to zero. Hence 

l! = bx = 0 

M. = bv 

(3.12) 

(3.13) 

.. 
( 3.14) 

s (3.12) has been differentiated and t he resulting Notice that as soon as 
A A A 

expressions equated to zero the notation x, v and k is i ntroduced to denote 
d the least squares estimates of x, v and k respectively. In principle this 

could be done in (3.12) but there would be a difficulty with the partial 
differentiation because ~' G and k are clearly related so making o~/o~, 
AI A ( ) bk ox etc. non-zero. There is no problem with 3.12 as it stands because x, 

the true corrections to the approximate values, is clearly independent of v, 
the true residuals of the observations. 

- 21-
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Hence we need to find values for "' and " whi ch simul taneous l y satisfy ( 3.10)' X V 

(3.13) and (3.14), i.e. 

A~ + cC' = b 
ATk = 0 

w\1 + CTk = 0 

which can be rearranged into the "hyp ermatrix" 

w eT A.. 0 0 V 

,\ c 0 A k = b (3.15) 

AT 0 
,, 

0 0 X 

or 
Py = u (3.16) 

which could, in principle, be solved by one of the standard linear algebra 
techniques for solving simultaneous linear equat i ons to yield 

-1 y = p u 

Such a solution would, however, involve an unnecessarily large amount of work 
as P is a matrix of size n + r + m. In practice it is far easier to use (3.1 
to derive explicit solutions for ~ and 0. We start by deriving general 
formulae for the elimination of unknowns from a partiti oned set of equati ons . 
(3.16) is partitioned as 

: :J [: J = [::] 
which can be multiplied out to give 

Pll Yl + P12 Y2 = ul 

p21 Y1 + P22 Y2 = u2 

(3.18 ) is rearranged to give 

whi ch can be substituted into (3.19) to give 

or 

- 22 -

( 3.17 ) 

(3.18) 

(3.19) 

(3.20 ) 



P
au

l A
 C

ro
ss

- U
C

L

k 

15 

l -1 ) -1 
(P22 - P21 Pll P12 Y2 = (u2 - P21 Pll ul) (3.21) 

If (3.15) is partitioned as follows 

w I eT 0 1'- 0 • V --P-----
I 

k c I 0 A = b I 

0 AT 0 
,, 

0 X 

and (3.21) is applied we obtain 

(3.22) 

(because u1 = D), which leads to 

[-=cw:~cT : ~t ~ j = l-!j (3.23) 

(3.23) is partitioned as indicated and (3.21) applied to give 

or 

which are the normal equations for the combined least squares problem. If 

(3.24) is written in the form 

it can be seen that it is the expl icit solution (3.2) for which we were 
searching . The residuals are obtained via the correlatives. 
to (3.23) gives 

Applying·(3.20) 

which can be substituted into (3.14) as follows 

C = - w-lCTk 

giving 

'( 

(3.26) 

(3.27) 

(3 . 28) 

Substituting (3.25) into (3.28) yields the desired explicit expression of the 
form (3.3), viz. 

0 = w-1cT(cw-1c1 )-1[ I- ~AT(cw-1cT)-1A]-1AT(cw-1cT)-1}b (3.29) 

- 23-
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To solve (3.24) for X involves the inversion of cw-lcT, which is of size r, 
followed by the solution of m simultaneous equations. The correlatives and 
residuals are obtained by matrix multiplication from (3.26) and (3.27) 

respectively; no further inversions or solutions are necessary. 

3.1 Alternative deri vation 

Weightman (1982) has given the following alternative derivations for equations 
(3.25) and (3.28), which have the advantages of being far shorter than the 

foregoing and of not requiring recourse to correlatives and Lagrange's 
Method of Undetermined Multipliers. They do, however, involve two substitutior 
(equations (3.32) and (3.33) below) that would be very difficult to find withot 
prior knowledge of the equations being sought. 

We begin by rewriting (3.10) as 

- Cv = Ax - b (3.30) 

Then, premultiplying and postmultiplying a matrix M, as yet unspecified, by 
both sides of (3.30), yields 

T T (Cv) MCv = (Ax - b) M(Ax - b) 

Now, putting 

and introducing a vector q such that 

V = w-lCTq 

we simplify the left hand side of (3.31) to 

= 

= 

= 

qTcw-lcTq 

qTcw-1ww-1cTq 

vT Wv (because of (3.33)) 

Then substituting (3.34) in (3.31) and expanding gives 

T 
v Wv = 

(3.31) 

(3.32) 

(3.33) 

(3. 34) . 

(3. 35) 
T For least squares we need to minimise v Wv. So differentiating (3.35) whilst 

remembering that M is symmetrical gives 

- 24-
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b T 2ATMA~- ATMb- ATMb d bx (v Wv) = = 0 (3.36) 

hence 
(ATMA)-lATMb A 

X = (3.37) 

and substituting (3.32) in (3.37) yields 

1\ ~T(CW-lCT)-lAJrl AT(CW-lCT)-lb ions X = (3.38) 

which is identical to (3.25). 

Jtio Now to determine the least squares estimates of the residuals we proceed as 

Ltho follows. Substitute (3.33) in (3.30) to yield 

iD) 

1\ 
q = (3.39) 

Then substitute (3.39) in (3.33) to give 

(3.40) 

l) which is identical to (3.28) . 

2) 

3) 

4) 

5) 

L 

3.2 Special cases 

The results for the combined case can now be simplified to produce explicit 
expressions (3.2) and (3.3) for the special cases of observation equations 

and condition equations. 

3.2.1 Observation eguations 

Putting C =-I yields, from (3.24), the normal equations 

with solution, from (3.25), 

"' X = (3.41) 

from (3.26) 

k = -W(b - A~) (3.42) 

and, from (3.28) 

- 25-
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A -1 ( A) v = -W W b - Ax = A~ - b (3.43) 

The ma jor computational part is the solution of m simultaneous equations . 

3.2.2 Condition eguations 

Putting A = 0 yields, from (3.26), the normal equations 

(cw-1cT)k = -b 

with solution 

1\ -(cw-1cT)-1b k = (3. 44) 

and, from (3.28), 

,., w-1cT(cw-1cT)-1b V = 
The major computati onal part is the solution of (n - m) simultaneous equations. 

3. 3 Summary of formulae 

The formulae for the least squares estimates of x and v for the combined 
problem and its two special cases can now be summarised as follows 

(i) for the parameters 
combined case 

observation equations 

(ii) for the residuals 
combined case 

observation equations 

condition equations 

~ = [AT(CW-lCT)- 1A]- lAT(CW-lCT)-lb 

~ = (ATWA)-lATWb 

0 = w- 1 cT(cw-1cT)-1 (b - A~) 

A Ax - b V = 

A w-1cT(cw-1cT)-1b V = 

It should be remarked that the above are the algebraic forms of the expressi on 
" 1\ and they do not necessarily indicate the best way to comput e x or v for a 

practical problem. 

3.4 Numerical checks 

The accuracy of the numerical solution of the combined case of least squares 
T( -1 T)- 1 " can be determined by checking the proximity of A CW C Cv to a null vector• 

A proof of this now follows . 

- 26-
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s. 

From . (3.28) 

AT(cw-1cT)-1cO = 

= 

= 0 (from (3.24)) 

For the special cases of observation equations the check is 

= 0 (as above with C = -I) 

(3.46) 

( 3. 47) 

and for the special case of condition equations it is usual to return to the 
linear model and check 

c(J - b = 0 (3.48) 

These checks ensure the correct computation and solution of the normal 

equations and the correct computation of the residuals. It is important to 
realise that they do not check the proper setting up and linearisation of the 

basic mathematical model, i.e. they do not check the correctness of (2.3) and 
(2.19). 

3.5 Accuracy of approximate values 

If the approximate values used to obtain the numerical values of the elements 

of the A and C matrices are not close to the final least squares estimates then 
the equations 

Ax + Cv - b = 0 (3.1) 

will not be a true linearisation of the functional model 

f(x -;;) 
/11 = 0 (2.3) 

In such cases it is necessary to iterate the least squares process using the 

least squares estimates from the ith computation as approximate values for 

the (i + l)th computation. The iteration is stopped when the vectors of 
parameters and residuals change by insignificant amounts. In practice such a 

"convergence" is usually achieved very rapidly and a complete failure to 

converge only occurs when using nonsensical approximate values . Cross (198la) 
includes a discussion of the convergence problem for the computation of 

individual positions at sea. 

This iterative process is very easy to program and is incorporated in most 
modern software. In cases where it is not desirable, such as for hand 
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l 

computations or in the methods described in sections 7 and 8, gr eat care 
must be taken to ensure that approximate values are close to t he f i nal least 
squares estimates. This is best done by deriving t hem from a preliminar y 

computation using a selection of the observed data. As a general guide 
Bomford (1980) quotes that so long as coordinates are a pproximated s uch that 

the resulting errors in azimuths and distances are less than 1 minute of arc 

and 1 in 4000 respectively iteration should not be necessary. 
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4. The estimation and interpretation of covariance matrices 

As explained in section 1, one of the three qualities of a position-fix tha~ 
needs to be assessed is its precision. This is mast conveniently done by the 
use of covariance matrices (sometimes called variance-covariance matrices). 

Moreover it is apparent from (3.7) that it is necessary to specify the 
covariance matrix of the observations, C~, in order to determine the weight 
matrix, W, needed to compute the least squares estimates of the parameters 

and rssiduals. Hence this section deals with the specification of C£ and the 
propagation of random errors through the least squares process to enable the 
computation of c~, eo and cl, the covariance matrices of the least squares 
estimates of the parameters, residuals and observed quantities respectively. 
Finally, methods for abstracting useful information from CA are discussed. 

X 

In order to keep this paper as far as possible "self-contained" from a 
statistical point of view, 4.1 contains some basic statistical definitions. 
It is worth noting that these are the only definitions needed to study the 
precision of survey measurements and of least squares estimates. 

4.1 Some statistical definitions 

(i) probability density function (pdf) 

The probability density function, ~(y.), of a variate y. is the 
l l 

function whose integral gives the probability, P(a,b), of y. lying in 
l 

the range a to b (see Fig. 4.1), i.e. 

P(a,b) 
b 

= I ~(y. )dy . 
l l a 

Fig. 4.1 

- 29-

(4.1) 

f. 

·I 



P
au

l A
 C

ro
ss

- U
C

L

I 
I ,, 
/I 

I 

1/ 
I 
\ 

I, 

'" 

A probability of one is taken to mean that an event is certain to occur, 
so we may write 

= 1 (4.2) 

When dealing with more than one variate we use the term "multivariate 
pdf11 to define a function whose integral gives the probability of y1 
lying in the range a1 to b1 at the same time as y2 lies in the range 
a2 to b2' y3 lies in the range a3 to b3, etc., i.e. 

bl b2 b3 
p = J I J 

al a2 a3 

or b 
p = I Hy)dy (4.3) 

a 

where 
y = [Yl Yz ••• JT 

(ii) expected value and mean 

The expected value, or expectation, of a function f(y.) is the 
~ 

arithmetic average of f(yi) according to the pdf of yi' i.e. 
a> 

= rrcy . )cp(y.)dy. 
~ ~ ~ ~ 

(4.4) 

The mean, ~i' of a variate, yi' is the expected value of the variate 
itself, i.e. 

f(y . ) 
~ 

a> 

= E(y.) 
~ 

= I y . cp( y . ) dy . 
-a> ~ ~ ~ 

For a multivariate pdf the expected value is 
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and the mean is 

IJ.l E(yl) yl 

IJ.2 E(y2) y2 
IJ. = = E(y3) = E = E{y) ( 4. 7) 

IJ.3 y3 

The following rules apply to expected values (they follow from (4.6)): 

E(ky) = kE(y) for non-stochastic k 

E(y + z + t ••• ) = E(y) + E(z) + E(t) + ••• 

(iii) unbiased estimate 

(4.8) 

(4.9) 

An estimate of y, say y*, is said to be unbiased if its expected value 
is equal to y, i.e. 

if E(y*) = y 

(iv) covariance matrix 

The covariance matrix of y, C , is defined as y 

Cy = E[(y - ~-~o) (y- ~-~o)TJ 
i.e. 

Cy = E( yl IJ.l [yl- IJ.l' Y2- ~2' ••• ' yn- ~-~on]) 
y2 - IJ.2 

y -n IJ.n 

or 
2 a a a 
yl yly2 ylyn 

2 
a a a 

Y2Yl y2 Y2Yn 

c = y 
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= where a2 
y. 
~ 

and a 
yiyj = 

E[(yi - ~i )2] is called the variance of yi 

E[( y. - ~· ') ( y. - ~ . )] is called the covariance of y. and • 
~ ~ J J ~ 

The positive square root of the variance of y., a , is referred to as 
~ y . 

the standard error (or standard deviation) of y . • ~Note that the ter ms 
~ 

standard err or and standard deviation are synonymous. 

The coefficient of correl ation between Y; and y., p . . , is defined as ... J ~J 

p .. 
~J 

= a /(a a ) y. y. y. yJ. 
~ J ~ 

note t hat - 1 ~ p . . ~ 1 . 
~J 

(v) propagation of variances and covariances 

(4.13) 

If the vector of variates z is related to the vector of variates y by 
the deterministic r elationship 

z = Ry (4.14) 

the relationship between the variances and covariances of z and y can 
be derived as follows. Note that the term "deterministic" used above 

simply means that the rel ationship between z and y does not depend on 

chance (R is non- stochastic ) although the elements of the vectors z and 
may themselves depend on chance (z a~d y are stochastic) . 

We can write, from (4 . 7) and (4 . 8), 

= E(z) = E(Ry) = RE(y) 

Hence, using (4 .11) 

Cz = E[(z - ~z) (z- ~z)TJ 
Then, from (4 .14) and (4.15), 

c = E[ (Ry - R~ )( Ry - R~)T] z y 

RE[ (y - TJ T = ~ )(y - ~ ) R y y 

= R C RT 
y 

= R~ y (4.15) 

(4.16) 

(4.16) is often referred to as Gauss's propagation of error law for 

linear equations . 
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4.2 Covariance matrix of the observations 

Before a least squares computation or analysis can take place the covariance 
matrix of the observations, Ct (often called the 11 a priori" covariance mat rix) , 
has to be estimated. The word "estimated" has been carefully chosen here in 
order to emphasise that it is necessary for the surveyor carrying out the 
computation to make a personal assessment of the variances and covariances of 
the observed quantities. Although there are a number of statistical tools 
that can be used to aid this assessment, and to check its correctness after 
the computation of the residuals, the subjective nature of the operation can 
never be completely removed. 

In this section methods for estimating the variances and covariances will be 
discussed. Their testing for possible subsequent alteration is discussed in 
section 5. 

4.2.1 Estimation of variances 

4.2.1.1 Repeated measurements 

It can be shown, e.g. by Cooper (1974, 25), that, if a measurement has been 

repeated n times with results t 1 , t 2 , ••• , tn and mean mt' then an unbiased 
estimate of the variance of mt is given by 

a 2 = vTvl[n(n- 1)] (4.17) 

where 

V = 
and 

Hence in situations where multiple measurements of the same quantity have been 
made (e.g. rounds of angles, repeated EDM distances), (4.17) can be used to 
obtain variances directly. It must, however, be pointed out that use of (4.17) 
(often referred to as the use of internal evidence) has a serious drawback 
when, as is usually the case, simply repeating the measurement does not 
involve resampling all the sources of random error. For instance, when a 
direction is measured with a theodolite, the following are am ongst the possible 
sources of random error: 
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(i) readi ng the scale 

(ii) bisecting the mark 

(iii) cant ering 

(iv ) levelling 

( v) later al refraction. 

Errors due to sources (iii), (iv) and (v) above would not be reflected in 
multipl e rounds from the same theodol ite "set-up" so (4.17) would obviously 
give too optimistic (variance too small) a measure of the precision of an 
observed angle . In other words, errors due to (iii), (iv) and (v) are 
systematic during the repeated measuring process . They will not usual ly be 
systematic, however, as far as the position- fix computation is concerned 
because they are, in general, random from station to station . 

4.2.1.2 External comparisons 

A better way to estimate the precision of a measuring process is to compare 
its resul ts with some known values (either true values or values derived from 
another measuring process that is significantly more precise than the one 
being used). For instance, with theodolite angle (or direction) measurements 
it is known that the three angles (or differences from six dir ections) i n a 

18cf. For a network with n tri angles Bomford plane triangle should sum to 
(1980, 164) quotes Ferrero' s 

2 a , and 
fo r mula for the variance of an observed angle, 

2 observed direction, a~ , as 
ex 

2 t/ t./3n (4.18) a = ex 

2 ATA/6n (4.19) a~ = 
~ 

where 
[t.l 62 t.nJT A = ... is a vector of triangular miscl osures 

Ashkenazi et al . (1972) quote an example of the appl ication of (4. 19) to the 
triangular misclosures of the retriangul ation of Great Britain. The result is 
a figure of 0~65 for the standard error of a direction derived from the mean 
of sixteen rounds. If (4.17) is used with the same data a val ue of between 
0~1 and 0~2 would be derived, illustrating t he point made i n 4. 2. 1.1 that the 
study of repeated measurements will invariably lead to an underestimation of 
their variances . An important corol lary to this is that large numbers of 
repetitions are usually of little value beyond guarding against gross errors. 
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For instance, with the foregoing example of direction measurement the major 
source of error is lateral refraction and no matter how large the theodolite 

horizontal circle and how skilled the observer (so long as they are both of 1st 
order geodetic standard) a standard error of 0~65 is to be expected. It may 
even be argued that two rounds of measurements should be sufficient (the second 
merely for a check on gross errors). Note that this argument would need to be 

modified if the repetitions sampled different atmospheric conditions, e.g. some 
during the day, some at night, etc. 

Similarly to (4.18) and (4.19), distance measuring systems are often calibrated 
on a baseline and an analysis of the calibration readings can lead to a figure 
for the variance of the equipment, e.g. Ashkenazi and Dodson (1977). 

Even these external comparison methods have their drawbacks. For instance, 
many surveying organisations specify "allowable triangular misclosures" for 
their field parties and insist that any angles failing to satisfy the criteria 
be reobserved. If the criteria are too strict, perfectly good angles (in the 
statistical sense) may be interpreted as blunders and reobserved until, by 
chance, they cause triangular misclosures to be within the set limits . Hence 
it is inevitable that (4.18) and (4.19) give small values for the angular 
variances even though reobservation may cause distortions. Also baseline 
calibration of distance measuring instruments cannot always gauge how they 
will perform over much longer distances in different atmospheric environments. 

4.2.1.3 Previous performance 

In situations where neither external comparisons nor repeated measurements are 
possible the only way to estimate the variances of observations is to look at 
evidence of the previous performance of the measuring system, such as may be 
found in manufacturers 1 literature or in scientific papers. In fact variances 
estimated in this manner are likely to be closer to the truth than those 
estimated from repeated measurements, although repeated measurements may 

is indicate the relative variances of a number of measurements made with the same 

e 

L 

system. 

4.2.1.4 General remark 

It is important to remark that when estimating the variances of individual 
observations we are actually trying to determine statistics (see 5.1) of the 
infinite populations of errors from which the errors in our measurements have 
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been .drawn. We are not attempting to estimate the actual size of the 
measurement errors. Hence when a number of measurements have been made using 
similar instrumentation and observing procedures it would be usual to assign 
the same variance to all the measurements. In fact very good evidence (such 
as that which may be yielded by the tests in 5.4.2) would be needed before 
assigning different variances to any groups of such measurements. 

To exemplify this argument consider a modern control network consisting of a 
number of interlocking traverses measured using similar instrumentation, 
under similar conditions, by technicians of a similar grade. It has happened 
in the past that in such situations each traverse has been considered 
separately and each individual measurement in that traverse assigned a variance 
related in some way to that traverse's misclosure. Such a procedure is 
contrary to statistical theory and very dangerous as it can lead to quite 
ridiculous assigned variances (as found, for instance, by Masson-Smith et al. 
(1974), when applyiDg a similar argument to gravity loops). The fact that a 
traverse closes well (perhaps perfectly) does not imply that the population 
from which its measurement errors are drawn is any different from that relati~ 
to a traverse with a large misclosure (so long as the misclosure is not so 
large as to indicate a gross error when the statistical tests in 5.4.1 are 
applied). The correct procedure is to compute just one variance from the mean 
of all the traverse misclosures and to use that to compute the measurement 
variances. Of course the argument is different if there are good reasons to 
suspect that different error populations are involved (e.g. if different 
instrumentation has been used, or if different topographical conditions exist~ 

A similar argument applies in offshore navigation, where it has happened that 
position-fixes have been assigned standard errors based on the area of the 
"cocked-hat" derived from a semi-graphic computation. Clearly what is .. 
important is the average size of a "cocked-hat" over a short period of time 
(during which the measurement process and fix geometry remain unchanged). 
Unless a "cocked-hat" is large enough to indicate a blunder it should not be 
interpreted as indicating a fix of a poorer quality than one with an area of 
zero. 

4.2.2 Estimation of covariances 

Two approaches to the estimation of covariances are discussed. 
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4.2.2.1 Simultaneous multiple measurements 

If two sets of measurements a1 , a2 , ••• , an and b1 , b2, ••• , b~ have been 
made so that a. and b. are simultaneous then it can be shown that the 

~ ~ 

covariance of their means, a and ~' can be estimated from 
T 

a~ = va vb/(n 1) 

where 
V = [al - a, a 

vb = [bl - ~' . . . ' 
and 

(4.20) is often known as Pearson1 s formula (after the statistician 
Karl Pearson). 

b 

Fig. 4.2 

(4 .20) 

For example, if two adjacent distances a and b in Fig. 4.2 have been measured 
by EDM over a long period of time as just described, we would expect that if 
the ith measurement of a is too long then the ith measure of b would also be 
too long (because the main error source in EDM is usually the inability of the 
refraction model to describe the actual conditions). Hence both v . and vb. 

a~ ~ 

would be positive giving a positive product in (4. 20) . Simil arly, if both 

lines were measured too short v . and vb . would both be negative, again giving 
a~ ~ 

a positive product. The result w~uld be a positive value for a~ and the 
measurements would be termed "positively correlated". Conversely, if two 
adjacent angles were measured in this way, we would probabl y obtain a negative 
value for their covariance because when one angle was too large the other 
would be too small (due to lateral refraction or pointing or reading errors). 

It must be pointed out that it is unusual for (4.20) to be used in practice 
because such simultaneous multiple measurements are rarely made. Moreover 
(4.20) may not always accurately reflect the degree of correl ation . For 
instance, in the foregoing distance example, if the EDM had a frequency error 

- 37 -



P
au

l A
 C

ro
ss

- U
C

L

~ I 

additional correlation would exist but would not be taken into account by 
Pearson1 s fo r mul a because all di stances woul d be in error by the same 
proportional amount. 

4.2.2 . 2 Error propagation studies 

In some situations the quantities used to form the vector 1 in the basic 
mathematical model (2 . 3) for the position- fix are not the quantities that have 
been directl y (and perhaps independently) observed. In such cases the 
covariances (and variances) of the derived quantities can be determined by 
means of e r ror propagation studies using (4 . 16 ) . 

Fig. 4.3 

Fig. 4.3 have been independently For instance, if directions d
1

, d2 and d3 in 
measured (covariances equal to zero) with . 2 2 d 2 d f var1ances a

1 
, a 2 an a 3 , an i 

the mathematical model has been formed in terms of the derived angles a
1 

and 
a 2, the variances of a

1 
and a2 and their covariance can be derived as follows 

= Ad (4.21) 

then, using (4.1 6), 

c = AC AT (4.22) a d 
or 

2 2 2 2 a a al + a2 -c2 al ala2 

= 
2 2 2 2 a a -c2 a2 + 0'3 a2al a2 
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Another example of the use of this procedure is when combining coordinates 

derived from satellite-Doppler with other measurements. The Doppler 
coordinates would themselves have come from a least squares computation and· 

would bring with them a full covariance matrix as in 4.3.1 even though t he 
measured Doppler counts may have been considered uncorrelated. 

This particular procedure can be very useful but it must be remembered that it 
ve does not remove the need to consider the correlation of the directly observed 

quantities. 

4.2.3 Diagonal covariance matrices 

It must be remarked here that it is extremely rare to use a full covariance 

matrix in practice. It is usually so difficult to estimate covariances that 
they are ignored even though they are known to exist. In such cases et 
becomes a diagonal matrix and its inversion to obtain W is t rivial. If 

2 2 2 a1 , a
2 

, ••• , an are the variances of then observat ions we have 

w = 

• -2 
a 

n 

= 

w n 

(4.23) 

where w1 , w2 , ••• , wn are referred to as the weights of the observations. 
It is from this special case that we obtain the well known relationship: 

weight = reciprocal of standard error squared (4.24) 

It must be emphasised that the term "weight of an observation" only has • 
meaning when observations are uncorrelated. If correlation exist s and et has 
off-diagonal elements, the term "weight matrix of a set of observations" must 
be used. Even if et has only a few off-diagonal elements W will be a full 
matrix (i.e. without zero terms). 

4.2.4 Estimation from least sguares residuals 

After a least squares computation (with an estimated Ct) has taken place it is 
possible to estimate the precision of the measurements by examining the 
residuals (the amounts by which the observed values have been "altered" by the 
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computation process). Obviously high precision (low standard error) 
observations will have small residuals and vice versa. 

It is usual, after computing the least squares residuals from (3.29), (3.43) 
2 or (3.45), to compute a quantity a , which is known as the unit variance, fron 

0 

a 
0 

2 (4 .25) 

(Note that a is often called the standard error of an observation of unit 
0 

weight.) 

It is shown in Appendix 1 that 

= 1 (4.26) 

Now, if a 2 is significantly different from unity (see 5.4.2.2 for a 
0 

statistical test to determine whether or not this is the case), and if there 

are no gross errors in the measurements (see 5.4.1), it can be concluded t hat 

the variances and covariances were, on average, underestimated by a factor of 

l/a0 ~ The reasoning for this conclusion is simple: if we multiply et by a
0

2 

we will have a new weight matrix W'~ where 

W' (4.27) 

and if we were to recompute the residuals v based on W1 they would not change 
(this can be simply verified by multiplying W in (3.29), (3.43) and (3.45) by 

2 2 any scalar), so the new a would be less than the old one by a factor of a , 
0 0 

i.e. it would be unity. Hence multiplying by a 2 will "correct" the estimat~ 
0 

variances and covariances of the observations. 

et (corrected) = ao2 et (estimated) (4.28) 

It should be noted that in cases where (n - m), the number of degrees of 

freedom, is small, e.g. in an individual offshore position-fix, a 2 computed 
0 

from one fix is of little value (this is evident from the statistical test 
in 5.4.2.2). If the measurement is repeated a large number of times (e.g. 

on a moving ship or stationary oil rig), however, the mean value of a 2 can 
0 

be used to correct the original estimate of the measurement variance. This 

procedure is then essentially equivalent to 4.2.1.1, where variances are 
computed using repeated measurements of the same quantity . 

2 It is important to realise that the proximity of a to unity can only give 
0 
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us tbe factor by which the a priori covariance matrix was on average incorrect. 
Under certain circumstances, however, it may be known, from testing external 

to the least squares computation, that some of the elements of Ci are correct 
and then we can deduce the average errors in the other parts of Ci . Typically 
we may be mixing angle and distance measurements and know the variances of the 

angles from, say, Ferrero 1 s formulae (see 4.2.1.2), and we may be able to use 
a 2 to help estimate the variances of the distances. Details of a practical 

0 

application of this procedure are given in Ashkenazi et al. (1972). 

4.2.5 Importance of weight matrices 

After discussion of methods of estimating Ci' it is clearly relevant to 
consider how important it is to estimate Ci correctly and to investigate the 
effect on the residuals and parameters of using an incorrect et. Certainly 
if the whole weight matrix is wrong by a constant factor (such as 1/a 2 ) it 

0 
will not matter; for example, for the parameters in the combined case (3.25) 
gives 

A 
X = (3.25) 

If W is multiplied by a scalar, say p, it is obvious that x will not change as 
p will cancel out. What is more important in this case is that the "relative" 
weighting between the observations should be correct and this is most difficult 
to achieve when dealing with heterogeneous data (such as mixtures of angles, 
distances, Doppler fixes, etc.). It is not possible to give general guidelines 
for the necessary accuracy needed in the estimation of Ci' so it is best to 
test the sensitivity of any particular problem by computing it with different 
estimates of Ct and analysing the differences in the results . Cross (1972) 
discusses the problem for large mixed triangulation networks and it has been 
generally found that parameters and residuals are not very sensitive to ihe 
Ci employed. When dealing with uncorrelated homogeneous data i t is usually 
sufficient to assume that all variances are the same, say a2

, and et becomes 
a scalar matrix, a 2I. 

The argument is considerably different when assessing the quality of a 
position-fix by means of analysing the covariance matrices of the residuals 
and parameters. By looking ahead, say to equations (4.67) and (4.68), it can 
be seen that if Ci is incorrectly estimated by a factor p then the estimate 
of the quality of the fix will be wrong by the same factor. Hence, although 
the overall size of Ct is not important for estimating the parameters and 
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residuals themselves, it is critical for the estimation of their quality. 
This is why the statistic cr 2 (discussed in 4.2.4) is of such special 

0 

importance in least squares computations. 

4.3 A posteriori covariance matrices 

It is usual in surveying and geodesy to refer to the covariance matrices of 

quantities derived from a least squares process as a posteriori covariance 
matrices. ·This is to contrast them with the covariance matrix of the 

observations which is called, as in 4.2, the a priori covariance matrix. 
Three a posteriori covariance matrices, those of the parameters, residuals 
and estimated observed quantities, are of especial interest and expressions 
for them wi ll be derived in this section. The approach will be to consider, 
for al l three matrices, the combined case and then to make the appropriate 
substitutions (given in 2.3) to obtain the expressions for observation and 
condition equations. It is relevant to mention at the outset that the terms 
a priori and a posteriori are not being used here with their strict classical 
meanings. Cooper (1981) discusses the matter in detail but, as pointed out 
by Cross (1982), the above meanings of the words are well understood in 
surveying and geodesy and there would be considerable difficulties and 
confusion if alternative meanings were adopted . 

Before considering the covariance matrices of the parameters, residuals and 
estimated observed quantitie~ it is necessary to derive an expression for 
Cb, the covariance matrix of the absolute term in the combined linearised 
mathematical model. Rewriting (2.19) we have 

Ax + Cv - b = 0 (2 .19) 
where 

b -F( x 0 t) = ' (4. 29) 

1 = ] - V (4.30) 

c = bF/bt (4.31) 

A = bF/bx (4.32) 

Substituting (4. 30) in (4.29) gives 

b = -F(x0
, ] - v) (4.33) 
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and ~xpanding to the first differential using Taylor's theorem leads to 

(4.34) 

(4.35) 

Substituting (4.31) in (4.35) gives 

b = -F(x0
, 1) + Cv (4.36) 

Applying the propagation of error law, (4.16), to (4.36) and remembering that 
F(x0

, ]) is an errorless constant gives 

but from (4.30) we have CV = et' giving 

cb = c et eT = cw-1cT 

4.3.1 Covariance matrix of the parameters 

The parameters are given by (3.25) as 

Defining D as 

and substitutuing (4.39) in (3.25) gives 

Applying (4.16) gives 

CQ = {(ATD-lA)-lATD-1} Cb {(ATD-lA)-lATD-l}T 

We note that, from (4.38) and (4.39), 

and so (4.41) becomes 

CA= 
X 
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which simplifies to 

CA = (AT0-1A)-l 
X 

i.e., from (4.39), 

(4.43) 

Notice that c~ is merely the inverse of the left hand side of the normal 
X 

equations (3.24) . 

4.3.2 Covariance matrix of the residuals 

Tl 

e: 

The covariance matrix of the residuals is derived via the covariance matrix U 

for the correlatives. Rewriting (3.26) using (4.39) gives 

" -1( "") k = - 0 b - Ax 

Substituting (4.40) and rearranging leads to 

Applying (4.16) and (4.42) gives 

Ck = 0-1[1- A(AT0-1A)-lATo- 1] 0 [1- o-1A(AT0-1A)-lAT]o-l 

which simplifies to 

No~ rewriting (3.27) 

" V = -

and applying ( 4 .16) gives 

Substituting (4.46) in (4.47) 

CV = w-1cTo-1[I- A(ATo-1A)-lATo-1 ] cw-1 
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Finally substituting (4.39) into (4.48) gives the full expression as 

4.3.3 Covariance matrix of the estimated observed guantities 

A 
The term "estimated observed quantities" is used for 4the least squares 
estimate of the quantities that were observed, i.e. 

i = t + 0 (4.50) 

Using (3.29) and (4.39), we write (4.50) as 

(4.51) 

Putting 

(4.52) 

simplifies (4.51) to 

A 
£ = £ + Gb (4.53) 

Now, from (4.36) 

= -F(x0
, I)+ c(l- £) (from (2.2)) 

giving 

b = -F(x0
, Z) + cl- et (4.54) 

Substituting (4.54) in (4.53) leads to 

t = t + G[-r(x0
, l) + ci- et] 

= G[-r(x0
, l) +et]+ (I- GC)£ (4. 55) 

Applying (4.16) to (4.55), whilst noticing that the first term of (4.55) is 
a non-stochastic vector and hence has no variances or covariances, we have 

(4.56) 
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Putting c..e -1 from (3.7), and expanding gives = w ' 

C_t = W-l - GCW-l - w-lCTGT + GCW-lCTGT (4 . 57) 

We now define the symmetric matrix R by 

R = A(ATD-1A)-lATD-l (4 . 58) 

Then, from (4.52) and (4.58), 

(4 . 59) 

and (4.57) becomes 

(4.60) 

The fourth term of (4.60) can now be expanded as follows 

fourth term 

(4.61) 

but, using (4 . 58), we may write 

(4.62) 

and 
(4.63) 

Substituting (4.62) and (4. 63) in (4.61) gives 

fourth term (4.64) 

From examination of (4.60) and (4 . 64) it is evident that the second and 
fourth terms of (4.60) cancel out and (4.60) becomes 

which, using (4.39) and (4 . 58) whilst noticing that R is symmetric, we can 
write in full as 

C£ = w-1 - w-1cT {r- A[AT(cw-1cT)-1 A)-1AT(cw-1cT)-1}<cw-1cT)-1cw- 1 

(4.66) 
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~3.4 Special cases 

4.3.4.1 Observation eguations 

Putting C = -I in equations (4.43), (4.49) and (4.66) and simplifying leads 
to the following expressions for the observation equations special case: 

(4.67) 

(4.68) 

and, by transposing the second (symmetric) term in the braces in (4.66), 

= (4.69) 

4.3 . 4 .2 Condition eguations 

Putting A = 0 in equations (4.49) and (4.66) and simplifying leads to the 
following expressions for the condition equations special case: 

4.3.5 

= 

= -1 w - CA 
V 

A further note on the use of the unit variance 

(4.70) 

(4.71) 

As was explained in 4.2.4 it is usual, as part of a least squares computation, 
to determine a value of a 2 , the unit variance, from (4.25). If it is 

0 

decided (as a result of the statistical test described in 5.4.2.2) that the 
unit variance is significantly different from unity then any a posterior~ 
covariance matrices computed from equations (4.43), (4.49), and (4.66) to 
(4.71) must be multiplied by it. This is because the weight matrix used in 
these equations would have been incorrect (on average) by the reciprocal of 
this factor, as shown in (4.27) and (4.28). 

Many authors, such as Krakiwsky (1976), include the unit variance in their 
expressions for the a posteriori covariance matrices, e.g. (4.67) is written 

(4.72) 

In this paper the unit variance has been deliberately omitted from all 
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these expressions to emphasise that it should not be used without first 
applying the relevant st~tistical test. To take an extreme example of the 
possible misuse of (4.72), imagine a traverse which, by chance, closes 

perfectly (most surveyors are lucky enough to achieve this occasionally). 
Then a least squares computation could lead to zero residuals and a zero value 
for a 2 • Hence (4.72) would indicate perfect coordinates for all points; 

0 

this is obviously nonsensical (all that has happened is that the errors around 

the traverse have summed to zero - they are not all zero). 

4.4 Interpretation of a posteriori covariance matrices 

This section is primarily concerned with CA, the covariance matrix of the 
X 

parameters. Apart from a short section (4.4.5), l ittle attention is paid to 
c1, the covariance matrix of the estimated observed quantities, because it 
is seldom computed in practice (except when the method of condition equations 

is used). C~, the covariance matrix of the residuals, is discussed in section! 
V 

as its main practical use is in connection with statistical testing. 

Basically c~ is used to assess the precision of a position-fix. A number of 
X 

different measures of precision can be employed and their computation and 
interpretation are discussed below. 

4.4.1 Positional standard errors 

Simply by taking the square roots of the relevant diagonal elements of CA we 
X 

can determine the standard errors of all coordinates. Hence each quoted 
coordinate can be accompanied by its standard error. 

It is important to realise that such standard errors are a function of the 
chosen coordinate s ystem and are said to be "reference frame dependent". In 

~ 

other words, coordinate standard errors measure the precision of a point 1 s 
position with respect to the fixed point(s) used when setting up the basic 
mathematical model (2.3). In situations where a number of points are being 
fixed simultaneously (e.g. in a triangulation network or an acoustic beacon 
calibration), great care must be taken with regard to the interpretation of 
positional standard errors because, in general, the further a point is from 
the fixed point(s) the larger its positional standard error will be. Hence 
the proper interpretation of a high standard error is not necessarily that thS 
point is weakly determined but perhaps that it is simply far from a fixed 
point (i.e. a point where the reference frame is defined). 
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In some problems, e.g. the fixing of an off-shore oil platform for the 
purpose of assessing the •townership" of the oil it recovers, the reference 
system is of very special importance because of the way the boundaries are 
defined, and it is likely that knowledge of positional standard errors (so 
long as they are related to the proper reference system) would be essential. 
In other situations, such as for most engineering work, the choice of the 
fixed point is quite arbitrary; yet positional standard errors depend on this 
point, so they would reflect the choice rather than the required precision. 
In such cases we search for measures (such as some of those in 4.4. 2 and 
4.4.3) that are invariant to the choice of a single fixed point. 

4 .4.2 Error ellipses 

In two-dimensional position-fixing work the positional standard errors 
discussed in 4.4.1 would be the standard errors of northings and eastings or 
latitudes and longitudes, i.e. in two orthogonal directions. It is often 
useful to know the standard errors in other directions as well and the error 
ellipseis a way of describing standard errors in all directions. Consider 
orthogonal axes x and y rotated by an angle ~ to directions p and q in Fig. 4.4 

X 
p 

1 
I 

I 

I 

~t------------------------+ y 

Fig. 4 . 4 

The rotation can be expressed in matrix algebra as 

[ 

pl = [ cos t sin *] [ x] 

q - sin ~ cos v y 
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Appljing (4.16) to (4.73) gives 

[ ::: [ 

cos ljt sin"'] [a/ crx~ J lcos V -sin+ J 
-sin 1jt cos 1jt a a s~n V cos 1jl yx y 

from which we can extract the positional variances of the fix in the directions 

p and q: 

a 2 2 2 . 2v 2 
+ 2 cos 1jl sin 1jt = cos ,., ax + s~n a a p y xy 

(4.74) 

2 . 2 " 
2 2 2 

- 2 cos 1jt sin 1jl a = s~n a + cos t ay a q X xy 
(4.75) 

? 
To determine the direction t in which a - is a maximum (or minimum) we m p 
differentiate (4.74) with respect to V and equat e to zero to yield 

- 2 cos V sin V a 2 + 2 sin V cos 1jt a 
2 

+ 2(cos2 
1jt - sin2 V ) a m m x m m y m m xy = 

giving 

sin 2 v a 2 + sin 2 V a 
2 

+ 2 cos 2 V a m x m y m xy = 0 

tan 2 1jt = 2 a / (a 
2 - a 

2 
) m xy x y (4.76) 

There are two possible solutions to (4.76), which we will call V and V . max m~n 

(they will be gif apart). Substitution of each into (4.74) will yield the 
· d · · · ·2 d 2 Of t th max~mum an m~n~mum var~ances a an a . • course un il is substi tutior max m~n 

has been made it will not be known which of the two solutions to (4.76) 
corresponds to the maximum and which to the minimum variance. 

An ellipse drawn with its major axis in the direction 1jt and with semimajor max 
and semiminor axes of length a and a . respectively is called an error max m~n 

ellipse. 

It is possible to derive alternative formulae for a and a . which do not max m~n 

involve 1jt • We proceed as follows. max 

Rearranging (4.74) as 

and putting 

2 2 2 cos t(a + tan V 
X 

2 
a + 2 tan1jt a ) Y xy 

- 50 -

(4.77) 



P
au

l A
 C

ro
ss

- U
C

L

1S 

= 

on 

and 

leads to 
2 a 

m 

Also let 

and 

t = tan~ 

2 2 
a = a -a X y 

b = a xy 

2" 
1/(1 + tan ~) 

Then, for a = a or a . , we have m max m~n 

tan 2V = 2t/(l- t 2 ) (using (4.78)) 
m 

= 2a j(a 2 - a 2 ) (from (4.76)) xy x y 

= 2b/a (from (4.80) and (4.81)) 

(4.78) . 

(4.79) 

(4.80) 

(4.81) 

(4.82) 

(4.83) 

(4.84) 

Equating and cross-multiplying the right hand sides of (4.82) and (4.84) 

gives 
2 bt + at - b = 0 

(4.85) 

with solution (taking positive square root) 

(4.86) 

putting 
(4.87) 

simiplifies (4.86) to 

t = (c - a)/2b 
(4.88) 

In preparation for substitution into (4.79) we can derive, from (4.88) 

1/(1 + t 2 ) = 2b
2/(c(c- a)) 

t 2/(l + t 2 ) = (c- a)/2c 

t/(1 + t 2 ) = b/c 
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Substituting (4.89), (4.90) and (4.91) into (4.79) gives 

a;ax = [ 2b
2
/ (c( c - a))] ax

2 
+[Cc - a)/2c] ay

2 
+ [2b/c] axy 

which, after using (4.8!), becomes 

but, from (4.80), we have 

a 
X 

2 2 = a+ a y 

Substituting ( 4.94) into (4 . 93) and rearranging yields 

(4 .92) 

(4.93) 

(4.94) 

"2 a max = [!/(2c(c - a )) J [C4b2 + 

= [ 1/(2c(c - a )) J [(2c2 -

2 2 2 2 J ( ) c + a - 2a c ) ay + 4b c 4.95 

2 2 J -2ac ) ay + 4b c (us~ng (4.87)) 

2 2 
= a + 2b /(c - a) y 

but, from (4.87), we have 

and substitution of (4.98) in (4.97) gives 

2 a max = a 2 + (c + a )/2 y 

= ! (a 2 +a 2 + c) (using (4.80)) X y 

(4.96) 

(4.97) 

(4 .98 ) 

"( 

(4.99) 

Then substituting (4.80) and (4.81) into (4.87) and substituting the result 
into (4.99) yields 

a 2 = t {a 2 + a 2 + [ea 2 - a 2)2 + 4a 2~} (4.100) max x y x y xy J 
Similarl y taking the negative square root i n (4.86) yiel ds 

(4.101) 
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Thes·e alternative formulae are important from a theoretical point of view 
because they establish a l ink with the eigenvalues of the covariance matrix 
c~ (see (4.104)), but in practice they are not very useful. This is becaUse 

X 
(4.76) has t wo solutions, * and* . , so (4.74) must be used anyway to max m~n 

distinguish bet ween them . 
determined. 

Hence a and a . woul d have already been max m~n 

It should be noted that the error ellipse does not quite describe the 
standard error in all directions, al though it is a good approximati on to it . 
The exact value of a p ' as given by (4.74), is the pedal curve of this ellipse 
and is shown by the dotted line in Fig. 4.5. It is t he locus of the point S 
where ST is perpendicular to OS and t angential to the error el lipse. It is 
the error el l ipse rather than its pedal curve that is gener ally most useful 
in practice so for most appl ications it is unusual to see this pedal curve 
drawn. 

X 

- -..... -
s ..... / 

.{). 
/I 

It 
I y 

Fig . 4.5 

It will be explained in 5.2 . 2 that if the observational errors belong to a 
normal distribution then the resulting two- dimensional positional errors 
belong to a bivariate normal distribution and it follows that there is a 
39.4% probability that the least squares estimate of a station 1 s position 
lies within an error ellipse centred a t its true position . Of course in 
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prac~ice true positions are not known so error ellipses have to be drawn with 
their centres at the least squares es t imates of the stations' positions. It 
is then sometimes said that a station's true position has a 39.4% probability 
of lying within its error ellipse but this statement is incorrect and its use 
should be avoided. It is better simply to refer to the error ellipse as the 

39.4% confidence region. 

For a more detailed account of the properties of the error ellipse and its 
pedal curve readers are referred to Bomford (1980, 719-724) and Richardus 
(1966). It is, however, interesting to note here that the sizes of the semi-
major and semiminor axes of an error ellipse are given by the square roots of 
the two eigenvalues of the matrix 

[ ::: :::] 
This is simply demonstrated as follows. Let ~ be an eigenvalue of the above 

matrix; then 

i.e. 

or 

(a 2 
X 

~)(a 2 - A) - a y xy 

0 

2 = 0 

A2 - (a 2 +a 2 )A +a 2 a 
2 - a 

X y X y XY 

with solutions 

= 

which rearranges to 

2 = 0 

= t {<a 2 + a 2) ± [<a 2 - a 2)2 + 4a 21!} 
X y · X y xy j-

which is identical to (4.100) and (4.101). 

(4.102) 

(4.103) 

(4.104) 

Also it can be demonstrated that the eigenvectors corresponding to the t wo 
eigenvalues contain the direction of the major and minor axes respectivelY· 
More generally we often consider that the n eigenvalues of an y n x n 
covariance matrix describe an n-dimensional "hyperellipsoid " and the n 
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eig~nvectors describe, in n-dimensional s pace, the directions of each of 
the axes of this hyperellipsoid. Al though this may seem at first sight to 

Y be somewhat theoretical and i mpossible to conceive it does have some 
e practical uses, for instance it affords a means by which l arge networks can 

be compared (e.g. largest eigenvalue or volume of hyperellipsoid) . 

f 

Error ellipses as described in the foregoing, with x and y in (4.73) referring 
to the coordinates of a survey station, are usually called absol ute error 
ellipses. It shoul d be noted that the remarks in 4 . 4.1 regarding the 
importance of the reference system to positional standard errors also apply 
to absolute error ellipses, i . e. they increase in size with distance from 
the fixed point(s). Ashkenazi and Cross (1 972) demonstrate this with a 
practical example. 

For large networks the patterns of the absolute error ellipses contain 
useful information. Err or el lipses with minor axes pointing towards the 
fixed point indicate orientation weakness and suggest that more azimuth 
control is needed. Conversely, if all major axes are pointing towards the 
fixed point, more scale control is required. 

In practice we are often more interested in the rel ative position of two 
points. In this case if we interpret x and y above as differences in 
position between the points i and j we can write 

[:] [ -: 0 1 

:J 
X. 
~ = 

- 1 0 yi 
(4.105) 

X. 
J 

yj 

and applying (4.16) to (4.105) gives 

2 2 2 a = a + a 2 a X X. X. X . X. 
~ J ~ J 

2 2 2 a = a + a 2 a y yi yj yiyj 
(4. 106) 

a = a a a + a xy x.y. x.y. x/i xjyj ~ ~ ~ J 

which can be used in (4.74) and (4.76) to compute the major and minor axes 
and orientation of the relative error el lipse between points i and j. Note 
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that all the quantities on the right hand side of the equality in (4.106) 

are found in the covariance matrix C~ . 

Relative error ellipses are invariant to t he choice of a single fixed 
station and are general ly more useful than absolute error ellipses for 
reasons explained in 4 . 4.1. 

4 . 4.3 Standard errors of derived guantities 

The quality of the coordinates estimated by a least squares computation is 
often best expressed by the precision of quantities derived from them. 
This is especially true when this precision relates cl osel y to the intended 

use of the coordinates . For instance, if two points on either side of a hill 
have been fixed in order to buil d a tunnel between them it would be necessary 
to use these coordinates to compute setting- out directions at each end of 
the tunnel. In fact the coordinates are not really of prime interest: they 
were only determined in order to establ ish the directions . Hence the 
standard errors of the derived directions coul d be of special importance and 
would be the best way to measure the precision of the fixed positions. 
Expressions for the standard errors of such derived quantities can be 

obtained as follows. 

Let q be a vector of k quantities derived from a set of estimated parameters 

~ via the vector function 

(4.107) 

(Note from 2.2 that the final values of the parameters are given by x0
, the 

provisional values, plus ~' their small changes estimated by the least 
squares process.) 

Expanding (4.107) by Taylor 1 s expansion gives 

" F(x0
) 

bF 11. q = + - -X 
bx

0 
(4.108) 

or 
1\ F(x0

) + 8~ q = (4. 109) 

where 8 is a k x m matrix containing the first differentials of the 
functional relationship between q and x0

• Matrix 8 is of a similar form to 
matrix A in (2 . 19) . Applying (4.16 ) to (4.109) whilst remembering that 

F(x0
) is non-stochastic leads to 
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(4.110) 

As an example, imagine that it is required to find the standard error of a 
plane direction a between two stations i and j . The relevant elements of ~ 

would be 
A (dE . dN. dE. dN.) T X = 

~ ~ J J 
(4.111) 

1\ would have j ust element a · F(x0 + ~) would be q one 
' 

"" F(x 0 + X') = a= tan - 1 (E . - E.)/(N.- N. ) q = J ~ J ~ 
(4 .112) 

8 would have a single row whose elements would be given by differentiating 
(4.112), viz. 

OCl' 2 
811 = = (N . -N . )/d bE. ~ J 

~ 

ba 2 812 = = (E. - E. )/d 
bNi ~ J 

813 = 
!)Cl' 2 
!)Ej = -(N.- N.)/d 

~ J 

~ 2 
814 = = (E. - E. )/d I)J . ~ J 

J 
where 

i 2 2 
= (E . - E. ) +(N . - N. ) 

~ J ~ J 

Then , with the required elements of C"" determined as i n 4 .3 . 1, t he variance 
X 

of Cl' (which would be the sole element of c~) would be given by (4. 110) . Of q 
course, in general, several quantities may be involved and c~ would be a full q 
matrix containing both the variances and the covariances of the selecte9 
derived quantities. It is worth remarking, however , that in practi ce the 
covariances of the derived quantities may not be very usef ul so i t may be 
efficient, from a computational point of view, to compute the variances onl y , 
following the procedure in the above example (i.e. considering each derived 
quantity independently). 

I 
St andard errors of certain relative derived quantiti es, such as angles, 
directions, distances and height differences, are invariant to the choice of 
a single fixed station and are consequently especially useful measures of 
precision when the coordinate system is arbi trarily chosen. Ashkenazi and 
Cross (1972, 1976) discuss this point and give examples. 
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4.4.4 Single number measures of precision 

There are some situations in which it is desirable to use a single number to 
express the precision of the position of single (or groups of) points. For 

instance, in a comparison of alternative observation schemes for a given 
position-fixing problem, the precision of each scheme must be "measured" by a 
single number in order to say which is the more precise. Although it is 

unrealistic (especially for large networks) to use one number to describe 
completely the precision~ the following are mentioned as possible candidates. 

(i) One possibility is a quantity related to the trace of CA, e.g. 
X 

[Tr(CA)]/m, the average parameter variance. Care must be taken to 
X 

include only elements corresponding to positional unknowns in Q. Other 
parameters may have different units and so invalidate the summation 
made in computing the trace. 

(ii) Secondly, the average size of error ellipses may be informative. Note 
that if absolute error ellipses are used (and if size is defined as 
a2 + a2

. ) this measure is virtually the same as (i). max mJ.n 
(iii) Thirdly, some surveyors use the spectral condition number of the normal 

equations (the ratio of the maximum to minimum eigenvalues). This can 
be interpreted as a measure of a network's precision because it 
reflects the numerical ill-conditioning of these equations. It has the 
disadvantage of not having a real physical meaning , other than as 
described in 4.4.2, and of being difficult to compute. 

(iv) Finally, the average standard error of a derived quantity may be 
helpful. A commonly used, and most effective, single number measure 
can be obtained by averaging the standard error of a number of similar 
(usually arbitrarily selected) derived quantities. The choice of 

~ 

quantities would be a function of the purpose of the network. 

4.4.5 Covariance matrix of the estimated observed quantities 

Apart from its limited use in statistical testing (see (5.34) in 5.4.1.3), 
covariance matrix of the estimated observed quantities, C~is seldom of 
interest. This is because usually the main objective of a least squares 
computation is to determine a set of parameters and so it is naturally CA, 

X 
their covariance matrix, that is required. 
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An exception is the special case of condition equations, where there are no 
parameters and we are only concerned with estimating the quantities that have 

been measured. Usually c2 would be used either to obtain the standard errors 
of the estimated observed quantities (by simply taking the square roots of the 
diagonal elements) or else to aid the computation of the covariance matrix of 
some derived quantities. For instance, if a triangulation network was 
computed by the method of condition equations, the result would be estimated 
angles, distances, azimuths, etc. These would later be used to compute 
coordinates and we would be interested in the covariance matrix of these 
coordinates so that the techniques of 4.4.1 to 4.4.4 could be used. 

The process for computing the required covariance matrix is identical to that 
described in 4.4.3. If y is a vector of derived coordinates 

c" = y (4.113) 

where B is a Jacobian containing the first differentials of the functional 
relationships used to compute the coordinates from the estimated observed 

quantities. 

4.4.6 Non-positional standard errors 

the In many position-fix computations the vector of parameters will consist only 
of coordinates (or small changes to coordinates in non-linear problems). 

ar 

the 

In some problems, however, such as example (b) in 2.1, one or more of the 
parameters may relate to the observations themselves (e.g. frequency errors 
or scale factors) or to the coordinate system (e.g. translation parameters). 
In such cases it would be usual to analyse the variances of these parameters 
separately from those of the coordinates. 

~ Usually only the relevant diagonal elements of CA would be of interest and 
X 

these would be used to compute the standard errors of all the non-positional 
parameters. Hence we would have a measure of their precision which could be 
quoted alongside their values. 

There are two main uses of such a measure of precision. The first is to help 
decide on the significance of a parameter (in conjunction with the statistical 

test in 5.4.3.2). Basically, if a parameter is very small compared with its 
standard error there would be considerable doubt as to whether or not it should 
have appeared in the model in the first place and it may be worthwhile to recast 
the model without it (hence increasing the degrees of freedom which, in general, 
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is a desirable action from the point of view of the statistical testing 
discussed in section 5). 

The second use is in the measurement of the quality of a network with respect 

to systematic errors. For example, if a scale unknown were included in t he 
model then its standard error would indicate how well the scale of the 
distance measurements to which it refers was determined, i.e. it would be a 
measure of the probability of the existence of scale errors in the estimated 
coordinates. Of course such an interpretation assumes the "fixed scale" of 
the network is correct (fixed scale would be provided either by fixed points 
or by distance measurements without scale unknowns). 

4.4.7 A note of caution 

Sections 4.4.1 to 4.4.5 have derived and described a number of extremely 
valuable methods of assessing the precision of position- fixes. It is, however, 
necessary to issue two warnings on their use. 

(i) The correctness of all three a posteriori covariance matrices depends 
directly on the correctness of the estimation of Cl (see 4.2). If the 
precision of the measurements has not been properly estimated, the 
a posteriori covariance matrices will be of little value. 

(ii) The a posteriori covariance matrices only measure the precision of 
position-fixes. This is not sufficient to describe fully the quality 
of a fix; it is essential to quote also some measures of reliability 
(e.g. as in 5.4.1.3) and to have some indication of whether or not 
systematic errors may be present. For example, Ashkenazi and Cross 
(1972) found that the precision of block VI of the European triangulat~ 
network was such that the average a posteriori standard error of a 
derived distance was 2.5 ppm but Weightman (1975) found an overalr 
3.1 ppm systematic error when comparing the triangulation with 
satellite-Doppler results, hence rendering the earlier estimate of 
limited value . 

4.5 The design of position-fixes 

It is evident from (4.43), (4.49), (4.66) and their special cases (4.67) to 
(4.71) that we do not need the actual measured quantities (vectors l or b) 
to compute the a posteriori covariance matrices . So long as a set of 
measurements has been planned (with a covariance matrix Cl) and the 
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approximate geometry is known (matrices A and C), the precision of a fix can 
be determined. Hence the a posteriori covariance matrices can be used to 
design position-fixes. 

It is now generally accepted by geodesists that it is useful to consider four 
separate geodetic design problems as suggested by Grafarend (1974). Most 
practical design problems will then be a combination of one or more of these 
four. They can be summarised as follows. 

Zero order design is the selection of a suitable reference system. This 
problem has received little attention and will not be considered here. It is 
obviously not relevant to position-fixing problems where the coordinate 
system is not open to choice, e.g. single point positioning offshore. 

First order design is the design of a network configuration, i.e. the choice 
of the positions of the points in the network and of which quantiti es to 
measure. There is usually little choice of positions of the points as these 

are largely dictated by the topography and the requirements of the survey . 
In some cases, however, there may be a choice: for example, in an off-shore 
single point-fix there may be a number of possible shore stations that could 
be used. Whether or not there is a choice of measurements will depend on the 

situation. For instance, in an engineering network the surveyor can usually 
choose between angle measurements and distance measurements or a combination 
of both, whereas at sea a hydrographer may have only one position-fixing 
system on board. 

Second order design is the choice of observation weights, i.e. with what 
precision should the measurements be made (and hence what instruments should 
be used)? Again, whether or not there is a choice of inst rumentation will 
depend on the situation. It should be pointed out here that the second 
order design problem is sometimes used to solve the first order design 
problem in the following iterative way: 

(i) postulate a large number of possible observations 

(ii) solve the second order design problem 

(iii) discard observations with low weights and, if required, go back to (ii). 

Hence in practice the second order design problem is more important than its 

definition would suggest. 

Thi rd order design is the improvement of existing positions by the inclusion 
of additional observations. This is especially useful in permanently 
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maintained networks such as national triangulation networks or shore control 
stations for off-shore position-fixing. As new instrumentation becomes 

available it is desirable to make additional measurements to improve the 
quality of the existing positions and the question of which measurements to 

make then arises. 

Using the observation equation model we can write down 

(4.67) 

and then say that, given CA~ the required precision, the first and second 
X 

order design problems are the solutions of (4.67) for A and W respectively. 

Usually there is a large (possibly infinite) number of possible solutions to 
a particular geodetic design problem and we are mainly interested in the 
solution that can be implemented with the least cost. This solution is 
called the optimal design and the two approaches currently used to determine 
it will now be summarised. 

4.5.1 Computer simulation 

Computer simulation is now common practice in many geodetic and engineering 
organisations and is also ideally suited to most off-shore position-fixing 
problems. The starting point is the precision criteria, which are usually 

expressed in terms of the quantities discussed in 4.4, e.g. all error 
ellipses should be less than a specified size or all standard errors of 
derived distances less than a specified size. Then the process is as 
illustrated in the flow diagram in Fig. 4 .6 

Specify 
precision 
criteria 

Compute. 
c 0 s t 

Choose an 
observation 
scheme 

Fig.4.6 
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The phrase ''set up computer model" in Fig. 4.5 refers to the computation of 
the a posteriori covariance matrix of the parameters, c~, and the phrase 

X 
"choose an observation scheme" includes selections relevant to the first, 
second and third order design problems, i.e. the network geometry may be 
changed by adding and deleting points or by changing the measured quantities, 
the precision of the planned measurements may be changed by altering et' 
and additional observations may be included. There are many examples of the 
application of the computer simulation method to practical problems, for 
instance Chrzanowski (1981) on the design of tunnel networks, Cross and 
Whiting (1981) on the design of level networks and Nickerson et al (1978) on 
the use of computer simulation with interactive graphics. 

4.5.2 Analytical methods 

Analytical methods involve direct mathematical solutions to optimal design 
problems and are currently at a very early stage of development. The only 
problem to which satisfactory solutions have so far been reached is the 
second order design problem applied to the special case of observation 
equat ions, i.e. the solution for W in (4.67) 

= (4.67) 

in the form 

w = (4.114) 

where c~ contains the required variances and covariances of the parameters 
X 

and is called the "criterion matrix". A full discussion of the various 
expressions for (4.114) is beyond the scope of this paper as it would need 
to include advanced mathematical techniques such as generalised matrix • 

algebra and operations research. Cross (19Blb) is a review of possible 
solutions to (4.114) which includes many references to more detailed 
publications. 

It is probably true to say that analytical design techniques are still at the 
research stage and almost all practical geodetic design problems are solved 
by the computer simulation method (or else purely by use of experience). 
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5. Statistical testing 

It is usual both before and after a least squares computat ion to want to ask 
a number of questions regarding the significance of certain aspects of the 

observed and computed data. Two examples are as follows. 

(i) Do all measurements come from the same normally distributed population? 
If not, one or more may contain gross errors and need to be rejected or 
perhaps may have to be assigned different a priori variances from the 
rest. 

(ii) Are two measurements or estimates of the same quantity significantly 
different? If so, the quantity itself may have changed (e.g. a 
distance or position may change owing to land movements). 

The answers to such questions are investigated by means of a process known as 
statistical testing. In this section a review of the statistical tests most 
useful for position-fixing will be given along with some examples of their 
application. Unlike least squares, which is the primary subject of this 
paper, statistical testing will not be given a full mathematical treatment 
(the subject is too large for this anyway). The approach will be to produce 
a practitioner's guide to the topic with emphasis on methodology rather than 
theory. Before describing the statistical tests themselves it is necessary to 
introduce the terminology of statistical testing and to describe the four 
probability density functions which form the basis of the tests to be 
described. 

5.1 Terminology of statistical testing 

Statistics, in particular statistical testing, has its own jargon and it is 
important to define the following terms carefully before proceeding. The~ 
definitions are taken from Wells and Krakiwsky (1971) but are similar to those 
in virtually any book on mathematical statistics. 

Statistic: 

Variate: 

a quantitative item of information (e.g. a mean or standard 
error) deduced from the application of statistical methods. 

a quantity (also known as a random variable) which may assume 
any one of the values of a specified set with a specified 
probability, i.e. with specified pdf (probability density 
functions were explained in 4.1). 
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Individual: 

Sample: 

a collection of all objects having in common a particular 
measurable variate. We will deal here with infinite 

populations and use Greek letters (e.g. a for standard error) 
to describe population statistics. 

a single member of a population. 

a group of individuals drawn from a population. We will use 
Roman letters (e.g. s for standard error) to describe sample 
statistics. 

To give an example of the use of these words, let us imagine that we have 
measured a distance n times under similar circumstances. The length of the 
line would be the variate and the n distances would be a sample of all the 
possible infinite number of measurements which constitute the population. 
Any one distance measurement would be an individual and the mean of the n 
measurem, d, is an example of a sample statistic whilst (assuming no 

systematic errors) ~' the true distance, would be the mean of the population 
and would be a population statistic. 

In statistical testing we use the term null hypothesis, H0, to describe the 
hypothesis we wish to test. For example, if we wanted to know whether the 
mean of the sample of distances above was significantly different from the 
true distance (perhaps obtained by some more precise measurement technique) 

we would write 

Tested against this null hypothesis is an alternative hypothesis, HA' which 
might be, in the above example 

Note that if the null hypothesis involves an equality then t he alternative 
hypothesis will be an inequality and we term the test a two-sided test 
because in the above example we would reject the null hypothesis both if d > ~ 

and if d < ~· If, however, we write 
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i.e. we do not mind by how much d is smaller than ~' we would term this a 
one-sided test. The terms two- tailed and one- tai led are also used. 

When a statistical test is carried out there a r e two ki nds of error which may 
be made. 

(i) The null hyposthesis could be rejected when it ought to have been 
accepted. Such an error is called a type 1 error and t he probability 
of making such an error is called the level of signi ficance of t he test 
and is usually denoted by a or more commonly by lOOa %, where a lies 
between 0 and 1. Alternatively the term level of confidence, given by 
(1 - a)lOO%, can be used. 

(ii ) The null hypothesis could be accepted when i t ought to have been 
rejected. Such an error is called a type 2 error and the probability 
of it occurring is denoted by~' or 100~%. (1- ~) is usually 
referred to as the power of the test. 

The situation is summarised in Table 5.1. Note that t here is an inverse 

ACTUAL SITUATION 

DECISION 
Null hypothesis Null hypothesis 

true false 

Accept null hypothesis Correct Type 2 error 

Reject null hypothesis Type 1 error Correct 

Table 5.1 

relationship between a and ~: if we reduce a t hen ~ must be increased and 
vice versa. For instance, in the case of the rejection of observations with 
gross errors, if we apply a test which ensures t hat all observations are 
accepted we would never reject a "good" observati on but t here is a high chan~ 
of accepting a "bad" observat ion (type 2 error). Conversely , if we rejected 
all our measurements we would never make a type 2 error. The choice of valu-
for a and ~ is subjective , i.e. it needs to be made personally by the survey~ 

carrying out the tests. 
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Finally, it is mentioned that the tests described in this paper come under the 

general heading of parametric tests because they are all based on statistics 
computed from the samples. Tests not based on these are called non-parametric 
tests, e.g. sign tests and rank tests. Such tests are not discussed here • .--.--

5.2 The normal distribution 

5.2.1 Single variate 

As far as surveying is concerned (and indeed most other b~anches of science 
and technology) the normal distribution is the most important of all the many 
probability distributions. Its pdf is defined by 

(5.1) 

where y is a single variate with standard error a. Fig . 5.1 shows the general 
form of the curve; note that it is, symmetrical about y = ~ with points of 

12l<y) 

I/{CT ...rz;T) 

POINTS OF INFLECTION 

y 

Fig. 5.1 

inflection at y = ~±a. We find it convenient in practice to use a standard 

normal distribution which relates to a variate z, where 

z = (y - ~)/a (5.2) 

and has a pdf 

(5.3) 

- 67 -

I 
~ t I 
I \ \ 
I l 

'I I 
!l.j 
~ I 'I 
11 

.,n 
I i 

I 
I •jl 
I • 
I I 

I . 
; I 
/I 

I, 
I 

'I 



P
au

l A
 C

ro
ss

- U
C

L

i.~. it has a mean of zero and standard error of unity . From t he definition 

of the pdf (equation (4.1)) the area under the curve i s the probability . 
Hence by integrating (5.3) as follows 

b 

P(a ~ z ~b)= J (l/J2-IT) exp {-z2/2} dz 
a 

(5.4) 

we can determine the probability of z lying in the range a t o b. The 
integration is relatively easy to perform: exp (-z2/2) is expanded usi ng t he 

exponential expression 

exp (x) = (5. 5) 

and we then only have to integrate a polynomial. In fact t he area under t he 
standard normal curve is usually tabulated for a = oo and b typi cally 0 to +~ ' 

for example Table 5.2 . Use of such tables is very straightforward. For 
instance, to find the probability of z lying between -1 and +1 we look up the 
values of the area for b equals -1 and +1 and subtract t hem, i .e . 

P(-1 ~ z ~ 1) = P(- oo z ~ 1) - P(- oo z ~ -1) 

= 0.8413 - (1 - 0.8413) 

= 0.6826 ( 5.6) 

Notice that for our real variate y, with mean ~ and standard error a, t hen , 
from (5.2) 

y =ZCT+~ (5. 7) 

Putting z = -1 and z = +1 into (5.7) gives 

y = ~ + a and y = ~ - a 

Hence, from (5.5) 

P(~ - a ~ y ~ ~ + a) = 0.6826 (5.8) 

That is to say that the probability of a variate being within one standard 
error of its mean is 0.6826 or 68.26%. This is an important result wi~h 

implications in the interpretation of many of the result s i n section 4. For 

instance, if the a posteriori standard error of a coordinat e is, say, lOcm ~ 
can state that, so long as a normal population is assumed, t here is a 68% 
(approximately) chance that the true error is less than lOcm • . Roughly 
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3, 

IB 

two-thirds of all variates lie within one standard error of their mean. 
Table 5.2 can also be used to derive the following useful figures: 

range of variate 
probability (%) 

5.2.2 Multivariate 

~+a 

68.26 
~ ± 2a 

95.44 
~ + 2.5(1 

98.76 
~ ± 30' 

99.74 

If we wish to consider several variaties simultaneously it is necessary to use 
the multivariate normal distribution with the pdf 

Hx) = T -1 I} ~) ex (x - ~) 2 (5.9) 

where x = [x1 , x2 , ••• , xn]T is a vector of normally distributed variates 
with mean vector~= [~1 , ~2 , ••• , ~n]T and covariance matrix ex. The symbol 
lex-l I denotes the determinant of the inverse of ex. To determine the 
probability of a number of events, e.g. a1 ~ x1 ~ b1 , a2 ~ x2 ~ b2 etc. 
occurring simultaneously, we need to integrate ~(x) as in equation (4.3). Of 
special interest is the bivariate case where x1 and x2 are the eastings and 
northings (or latitude and longitude) and we would like to find the 
probability of the true error in x1 being within one standard error at the 
same time as the true error in x2 being within one standard error, i.e. the 
probability of the least squares estimate of a point lying within an error 
ellipse centred at the unknown true position of the point (as described in 
4.4.2). It can be shown, e.g. Mikhail and Gracie (1981, 230), that this 
probability is 0.394 or 39.4%. Similarly the following figures are given: 

c 
p 

1.000 
0.394 

2.000 
0.865 

2.447 
0.950 

3.000 
0.989 

where P is the probability of a point lying within an error ellipse drawn with 
semi-major and semi-minor axes of ea and ea . • It is common practice to max m~n 

draw error ellipses 2.447 times their "standard" size and then to be 95% sure 
that the true errors in the positions of the points are smaller than those 
described by the drawn ellipses. 

5.2.3 Importance of the normal distribution 

It will become evident in section 6 that observational errors do not need to 
be normally distributed in order to apply least squares. We do, however, 
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need to have a normal distribution (or some other known pdf) in order to make 
statements, such as in 5.2.1 and 5.2.2, regarding the probability of certain 

events occurring. Also, it will be seen that the normal distribution is 
crucial to the theory of the statistical tests to be described in 5.4. 

It turns out that there are actually good theoretical reasons for using t he 
normal distribution pdf even when we know nothing of t he real pdf of our 
observations or even when we suspect the pdf not to be normal. This is 
because of a remarkable statistical theorem known as the central limit theorem, 
The theorem itself will not be explained here but is presented formally in 
virtually any text on mathematical statistics (although for a proof a more 
advanced work such as Cramer (1946) would be required). In this paper we 
merely mention one of the many implications of the theorem, that if we have 
a variate x that is the sum of a number of independent variates x1 , x2 , ••• , x

0 
then as n increases the pdf of x approaches a normal distribution, irrespective 
of the pdfs of x1 , x2 , .•• , xn. Now the errors in almost all surveying 
measurements are in fact the sum of a number of small errors, so it follows 
from the central limit theorem that, irrespective of the pdfs of the small 
errors (and so long as there are more than about four of them), a normal pdf 
will closely describe the total error of a survey measurement. Hence special 
attention is paid to the normal distribution in almost all books on the 

treatment of surveying measurements. 

5.3 Sampling distributions 

In order to carry out certain statistical tests we need to know something of 
the pdfs of various functions of quantities that are themselves normally 
distributed. These pdfs, sometimes called sampling distributions, are both 
lengthy and difficult to derive, so here we will merely name, and explai~ 
the relationship between, the three most important ones. Before doing so it 

should be emphasised that, in general, functions of normally distributed 
variates will not be normally distributed; for instance, the random variable 

2 x is not normally distributed even though x is. 

5.3.1 Chi-sguare distribution 

If x1 , x2 , ••• , x'V are 'V independent random variables, each normally distribute! 
2 with zero mean and variance unity, then the functio n x 'V' where 

2 
X 'V = 
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is said to have a chi-square distribution with ~ degrees of freedom. Notice 
that x2 will be a random variable. The shape of a typical chi-square pdf 

~ 

is given in Fig. 5.2. It should be noted that as ~ increases so the chi-

5quare pdf approaches a normal distribution. Table 5.3 gives what are known 
as the percentiles of the x2 ~ distribution. Essentially a percentile is the 

2 value of X ~ that, for a given number of degrees of freedom, will be exceeded 
with a specified probability. For instance, with three degrees of freedom 

the probability of x2 
V being less than 6.25 is 0.90 or 90%. This is illustrated 

in Fig. 5.2 and can be confirmed by looking up three degrees of freedom in 
Table 5.3. We would say that 6.25 was the 90% percentile of a chi-square 
distribution with three degrees of freedom. 

Fig. 5.2 

5.3.2 t distribution 

If we have two normally distributed random variables, x1 and x2 , each with 
mean zero and variance unity, then the quantity t given by 

(5.11) 

is said to have a t distribution with V degrees of freedom. The distribution 
is often called the Student's distribution after the statistician W.S. Gosset 
(at the time a chemist at Guinness1 s brewery in Dublin) who used the pseudonym 
"Student". The t pdf is exemplified in Fig. 5.3, which shows the case for 
four degrees of freedom (v = 4) . The distribution looks somewhat similar 
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to the normal and is identical to it when V = w. Table 5.4 gives some 
percentiles for the t distribution: as an example, when V = 4 t here is a 

0.9 (90%) probability that t lies between -2.132 and +2 . 132; this case is 

also shown in Fig. 5.3. 

Fig . 5.3 

5.3.3 F distribution 

2 2 If we have two variables x and y , both with chi-square distributions, i.e. 

2 2 2 2 
X = xl + x2 + • • • + X 

vl 
(5.12) 

2 2 2 2 y = yl + y2 + • • • + y~ 
2 

with x1 , x2, ••• , x~ and y1 , y2, ••• , Yv normally distributed with zero • 
1 2 

mean and unit variance and with v1 and v2 degrees of freedom respectively, 
the variable F,, given by 

~~ 

= (x2/vl)/(y2/v2) (5.13) 

is said to have an F distribution (named after the statistician R.A. Fisher). 
The F pdf is shown in Fig. 5.4 and some percentiles are given in Table 5.5. 
As an example, in the case where v1 = 10 and v2 = 20 there is a 0.95 (95%) 
probability that F is less than 2.35 (note that F is ~bviously always 
positive). It is worth noting that when v1 = 1 the F statistic is the 
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square of the t statistic, and it can be shown that as v2 increases the 
f di stribution approaches the x2 distribution. 

0\Fl 

Fig. 5.4 

5.4 Statistical tests 

In 5.1 the basic terminology of statistical tests was given and in 5.2 and 
5.3 the distributions upon which all the tests in this paper are based were 
described. Now these results will be used in order to explain how to carry 
out some statistical tests that particularly relate to the computation of 
position-fixes by least squares. 

5.4.1 Identification of outliers 

The word "outlier" has no strict statistical definition and can only be • 
defined in an intuitive manner; for instance, Hawkins (1980) defines an 
outlier as "an observation which deviates so much from other observations as 
to arouse suspicions that it was generated by a different mechanism". The 
problem of identifying outliers is very important in surveying, especially 
when data are automatically captured and processed, and never seen i n their 
raw form by the surveyor. Since there is no opportunity in such cases f or 
him to pick out and investigate obvious gross errors, automatic statistical 
methods of detecting outliers are essential. 

In position-fixing the problem can arise in two situations, firstly , as 
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considered in 5.4.1.1, when we have multiple measurements of a single 
quantity such as a distance or an angle, or when a position has been computed 

many times such as in multiple pass Doppler computations, and, secondly, as 
considered in 5.4.1.2, when we have a number of single measurements (or means) 
that are "fitted together" during a least squares computation. It must be 
emphasised that the statistical tests that will be described to deal with 
these two situations can only "identify" the outliers; they cannot in 

themselves distinguish between their two possible causes: 

(i) there has been a gross error in the measurement 

(ii) the basic mathematical model is incorrect . 

In practice, (i) above is more common and it would be usual to reject any 
outlying measurements and recompute the position-fix without them. Before 
rejection, however, the measurement should be investigated, as the cause of 
the gross error may be apparent and it may be possible to correct it, e.g. 
two numbers may have been transposed when keying measured data into a 

computer. The danger with the automatic rejection of all outliers is that 
cause (ii) above may be overlooked and important information rejected . For 
instance, consider a single point position-fix by n measured distances to 
known stations where n - 1 lines are short and the nth is a long line . If 
the measuring system has an unmodelled scale error the nth line will have a 
larger residual than all the rest and may be rejected when the proper 
solution would be to recast the model with ·a scale unknown (as in 2 •. 5.2). 
Model errors are exceptionally difficult to detect and great care must be 
taken to ensure that any information that may aid their detection is not 

rejected. Some of the great advances of science, e.g . the discovery of 
Neptune from the perturbations of Uranus, are due to observations not quite 
fitting their supposed model. v 

5.4.1.1 From repeated measurements 

If we have a large number of repeated measurements of the same quantity, 
x1 , x2 , ••• , xn' it is common practice to compute their mean and standard 
deviation, x and s respectively, and to compute for the ith measurement the 
statistic 

r. = (x. - x)/s 
~ ~ 

(5 .. 14) 

If the observational errors are normally distributed r. will have a standard 
~ 
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normal distribution (mean zero and standard error unity) and t he probability 
of r . being greater than a certain size can be obtained from Table 5 . 2. I f 

~ 

we wish to ascertain whether or not any of the measurements are outliers we 
set up a test as follows: 

Ho: X. comes from a normal distribution with a mean of ~· and standard error 
~ ex and s are estimates of 1.1. and c;) 

HA: X. 
~ 

comes from a normal distribution with a mean of ( 1.1. + gross error) and 

standard error cr. 

We choose a level of significance a (say 0 .01, i.e. we are only prepared to 
identify "inlying" measurements as outliers in one case out of a hundred) and 
look up the relevant percentile for the normal distribution in Table 5.2 
(2.58 for a = 0. 01). Then (for this example) we identify as an outlier any 
measurement for which r. is greater than 2.58 in modulus. Notice that this 

~ 

c; 

is a two- tailed test as we wish to detect both positive and negative outliers. 
The chances of failing to detect an outl ier (type 2 error) are discussed in 
5.4.1.2. 

The foregoing procedure strictly only applies when n is very large (say 
greater than 30 as a practical guideline). For small er values of n a 
different procedure has to be adopted as the sample mean and standard 
deviation may not represent very well their equivalents for the population. 
There are many alternative methods but limited detail will be given here as we 
are mainly concerned with least squares and 5.4.1.2 is a more relevant problem. 

One approach is to use the so-cal led Chauvenet 1 s criterion which simply posits 
that the level of confidence should be chosen to be equal to l/(2n), so for 
say 8 observations, a woul d be 0 .0625 and we would identify as outl iers all 
measurements with r. greater than 1.82 (from Table 5. 2). Whereas if n = 20 

~ ? 

then a = 0 . 025 and the criterion would be 2.24. This method is simple and 
effective but its mathematical basis is rather doubtful as on average it will 
identify as an outlier half a good observation (an inlier) per sample 
regardless of the size of the sample. It should not be used successively to 
search for more than one outlier because of the manner i n which a is 
related to n. 

More rigorous approaches to the problem have mainly been based on the t 
distribution; for instance, it can be shown that the statistic 

t = t; 2 t r(n - 2) (n - 1 - r ) (5.15) 
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(where r is defined as in (5.14))has a t distribution with n - 1 degrees of 
freedom. Hence the t tables (Table 5.4) could be used, just as the normal 

distribution tables were used in the earlier part of this section, to decide 
whether or not an observation is an outlier. The procedure is simply to 

compute the val ue of t and compare it with a percentile from Table 5.4. 
Al ternativel y, it is possible merely to compute r as in (5.14) but to use 
critical percentiles based on the size of sample and the t distribution. 
Logan (1955 ) gives full details of this procedure and incl udes simple, easy 
to use tables (for a = 0. 05, 0 . 01 and 0.001) . This technique is mathematical~ 
identical to the t statistic above but easier to apply in practice . 

The identification of outliers is now a very advanced branch of mathematical 
statistics and readers who wish to persue the topic in depth are recommended 
to read Hawkins (1980). 

5.4.1.2 From the results of a least sguares computation 

We need to have some method of analysing the results of a least squares 
computation to determine whether or not any of the observations are outliers. 
A method for doing this wil l now be given; note that alt hough the discussion 
will be limited to the special case of observation equations, the method can 
be extended to handle the combined case (and of course the special cas~ of 
condition equations). Also note that although t his section is written 
assuming that the cause of the outl ying measurement is a gross error (blundecl, 
the technique is equally applicable t o detecting model errors as discussed i n 
5.4.1. 

Let l. be the ith observation of a vector of n observations l, used in a least 
~ 

squares computation. If we suspect that l. contains a gross error A. whilst 
~ ~ 

all other observations have only random, normally distributed errors e.,~we 
~ 

have to set up a test as follows 

l . = I. + €. 
~ ~ ~ 

(5.16) 

l . = 1. + €. + A. 
~ ~ 3.. ~ 

(5.17) 

Note that if an observation contains a gross error we expect i t to belong to 
a normally distributed population, but about a mean of i. + A. rather than ~· 

~ ~ 

Clearly in practice we would want to apply (5.16) and (5 . 17) to every 
observation in turn. 
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We now introduce a test statistic~. , given by 
~ 

where 

and 

.a. = 'd./adl\ 
~ ~ . 

~ 

1\ 1\C 
d. = t. - t. 
~ ~ ~ 

(5.18) 

= the ith observed quantity computed from the parameters 
derived from a least squares computation of all the 
observations except t. 

~ 

(JI\ = standard error of a .. d. ~ 
~ 

It has been shown by Baarda (1968) that if H0 is true ~i will be normall y 
distributed with a mean of zero and variance of unity; otherwise, under HA' 
the normal distribution will have mean 6 . where 

~ 

(5.19) 

The test is carried out by specifying a level of confidence (e.g. 95%) 
(a = 0.05). We can see from Table 5.2 thatG. should be less than 1.96 in 

.1. 

95% of cases; hence if Q. > 1.96 we reject the observation with a 5% chance 
~ 

of making a type 1 error. If wa specify the required power of the test as say 
90% (~ = 0.10) we can determine the "upper bound", 6~ on 5. (and hence A.), 

~ ~ ~ 

i.e. we can determine the maximum size of gross error that will be accepted 
(type 2 error) when it should have been rejected one time in ten. This is 
done by examining Fig. 5.5. The value of 5~ is given as 

= a + b (5.20) 

and a and b are given from Table 5.2 as 1.96 and 1.28 respectively; hence 

= 

and, from (5.19), 

= 

3.24 

3.24 (JA d. 
~ 

(5.21) 

Therefore, the use .of the above values for a and ~ and rejecting all 
observations with a value of~. greater than 1.96 will cause rejection of 

~ 

"correct" observations in five percent of the observations ( type 1 error) 
whilst one tenth of gross errors greater than or equal to 3.24 a~. will remain 

~ 
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undetected (type 2 error). 

Fig. 5.5 

In practice it would be very tedious to have to compute Q. and crd as indicated · 
~ . 

by (5.18); hence we would prefer to have a mare straightforward ffieans of 
computing it. I t is shown in Appendix 2 that 

/\ T ~/ T ~ w. = -e. Wv (e. WC"'We.) 2 
~ ~ ~ V ~ 

(5.22) 

and 
T ~ 

CJ" = 1/(e. WC"We. )2 d. ~ V ~ 
(5.23) 

~ 

where e. is a null vector but far the ith element which is unity, i .e. 
~ 

T e.= (o,o, ... ,l, ... ,o,o] 
~ 

(5.24) 

In the case of W being diagonal (which is usual in practice) with the standard 
error of the ith observation being cr . , it is shown in Appendix 2 that (5~22) a~ 

~ 

(5.23) simplify to 

and 

~ - = v./cr/\ 
~ ~ V . 

~ 

2 
CJd"'. = CJ. I (JA 

~ v. 
~ ~ 

(5.25) 

(5.26) 

" i.e. w. is the ratio of a least squares residual to its standard error. Note 
that v~ is given by (3.32) and cr"" 2 is the ith diagonal element of CA given 

~ V . V 
~ 
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by (4.68). It is really quite remarkable that (5.18) and (5.25) should be 
equivalent and that there should be such a simple test for the rejection of 
outliers using the results of a least squares computation. 

If it is suspected that a number of observations simultaneously contain gross 
errors then we can use, according to Kok et al (1980), the same one-dimensional 
w test described above except that the vector e. in (5.22) becomes e where e 

l. 

is a null vector but for the elements which correspond to the observations to 
be tested simultaneously, which will be unity. Such a test is, however, 
rarely carried out .asit would be unusual to suspect a particular group of 
observations of containing gross errors and to test every possible group 
would be quite impractical. The test is usually used as described, i.e. for 
each individual observation in turn, in which case the process is sometimes 
referred to as"data snooping". 

The foregoing testing procedure, based on the normal distribution, is commonly 
known as the 8-method of testing, after W.W. Baarda, who first introduced it. 
It is strictly only correct when each value of OA truly reflects the V. 

1ted population from which each residual has been drawR. This will only be the 

ard 
) and 

te 

case when we are sure that we are using the correct W, either because we have 
external evidence or because we have a very large sample of observations. In 
general this is not the case and we should adopt a slightly different testing 
procedure. Pope (1976) has made a detailed theoretical study of the statistics 
of residuals and shown that, so long as the unit variance is unity, T, 

computed from (5.25), has the following distribution 

(5.27) 

where t~1 is a t distribution with v-1 degrees of freedom and V is the 
number of degrees of freedom in the least squares computation. This is kpown 
as the tau distribution and some of its percentiles are given in Table 5.6. 

The testing procedure is as follows. 

(i) Carry out the least squares computation in the usual way and compute, 

(ii) 

for each 

Compute, 

= 

observation, 0. and crA • 
l. V • 

l. 

for each observation, the tau statistic from 

~ . /(cr cr" ) 
l. 0 V. 

l. 

(5.28) 

where cr is the standard error of an observation of unit weight. 
0 
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(iil) Select a value for a, the level of significance, and compare ~ with the 
relevant critical value in Table 5.6. If T is the greater then the 

observation is liable for rejection. 

The above process is based on the assumption that only one blunder exists in 
the observations. In practice it is quite possible for a number of gross 

errors to be introduced, e.g. a gross cantering error during the measurement 
of a triangulation network will cause gross errors in all observations at or 
to that point. Very little work has been done on this problem but interested 
readers are referred to the already mentioned Kok et al (1980) and to 
Stefanovic (1978) for details of possible strategies. 

5.4.1.3 Reliability of a position-fix 

The reliability of a position-fix is a measure of the ease with which gross 
errors may be detected. Imagine a single point being fixed by measured 
distances to two known points. There would be no redundant measurements and 
(3.43) and (4.68) would give both C. and OA as zero for both measurements. 

~ V. 

Hence w. would be 
~ 

~ 

indeterminate and no check for gross errors would be 
possible. This of course is reasonable, as any two distance measurements 
would produce a position and there is obviously no way of detecting a gross 

error. We would consider that such a position-fix was unreliable, although 
of course it may be very precise with small error ellipses etc. 

It is useful to have some quantitative measure of the reliability of a 
position-fix. Pelzer (1979) has introduced the quantity T . defined by 

~ 

2 
T . = 
~ 

T T 1/(e . CAe.e. WCAWe.) 
1 N 1 1 V ~ 

or more simply in the case of a diagonal C.t (and hence diagonal W) 

= 2 T 1/(a. e. WCAWe.) 
1 1 V 1 

= a3./a~ (using (5.23)) 
1 

Now, rearranging (5.19), we have 

= 

= 

u 6. ad~ 
~ . 

1 

o~ a. ad~ /a. 
~ 1 . 1 

~ 
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and taking the square root of (5.30) and substituting in (5.31) gives 

= u o. a. T. 
l. l. l. 

(5.32) 

where 6 ~ depends only on the chosen probabilities, a and ~, of type 1 and type 2 · 
l. 

errors. Hence once T. has been computed for an observation we can simply 
l. 

compute from (5 .32 ) the maximum undetected gross error in that observation 
{with probability ~). For instance, using the figures for a and ~ in 5.4.1.2 
we could say that there was a 10% chance of a gross error greater than 3.24 
a. T. remaining undetected. It is extremely important to emphasise that T. 

l. l. l. 
does not depend on v (i.e. on the measurements themselves) so a position-fix 
can be analysed for reliability in advance of its actual observation. Hence 
both precision and reliability can be considered when designing position-fixing 
procedures. 

Note that, when W is diagonal, substitution of (5.26) in (5.30) yields 

T. 
l. = a./a,.. 

l. V. 
l. 

(5.33) 

i.e. the ratio of the standard error of an observation to the standard error of 
its least squares residual (given by (4.68)). Ashkenazi (1980) has suggested 
an alternative measure, p., given by 

l. 

p. = &./a. 
l. l. l. 

(5.34) 

where&. is the standard error of the least squares estimate of the ith observed 
l. 

quantity and is given by the square root of the ith diagonal element of c1 
(see (4.69)). Note that (5.33) and (5.34) are closely related because, when W 
is diagonal, (4.69) simplifies to 

2 
a"" = V 

2 " 2 a . -a. 
l. l. 

(5.35) 

The disadvantage of pi compared with Ti is that it is not possible to make the 
same kind of simple statement regarding the largest undetected gross error. 

Baarda (1968) has described the foregoing concept of reliability as "internal 
reliability" and he further defines "external reliability" as the effect of an 
undetected gross error on the parameters and on quantities computed from the 
parameters. It could be argued that external reliability is more important than 
internal reliability as undetected gross errors are of no consequence if they do 
not significantly effect the parameters. External reliability is determined as 
follows. 
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1\ 
Consider a quantity ~' with least squares estimate $, computed from the 

1\ f\ u 
Param'eters and let A~. be the effect on $ of a gross error of size A., as given 

1 1 

by (5.32), in the ith observation. Then it is shown in Appendix 2 that, for 

uncorrelated observations, 

1'\ u 
A$ . :=: 6 • y . a~ 

1 1 1 ,. 
(5.36) 

where 

Y. = &.fa ,.. 
1 1 V . 

(5.37) 
1 

Hence if a gross error equal to the boundary value is made in the ith 
1\ 

observation the resulting error in 'must be less than y. multiplied by a 
" 1 

constant multiplied by the standard error of $. Note that a~ is evaluated 
according to 4.4 . 3. Therefore y . is a measure of the external reliability: it 

1 

is a factor which multiplies the standard error of the desired function of the 
parameters to give the maximum effect of ~~ on that function. Notice that y . 

1 1 

depends on the selected observation and not on w, i.e. it is the same for all 
functions of the parameters. Also it can be computed without the values of the 
observations and can hence be used as a criterion for the design of position-
fixes . 

In the case of uncorrelated observations the relationship between T. and y. 
1 1 

can be derived as follows. 

Combining (5.33) and (5.37) yields 

2 2 2 N. I 2 
T . - y. = (a. - a .) a" 

1 1 1 1 V. 
1 

(5. 38) 

= 1 (from (5.35)) (5 . 39) 

i.e. y~ 
1 = .f-1 

1 (5.40) 

Hence the computation ofT. automatically leads toy . • It follows from (S . 40) 
1 1 

that if an observation has high internal reliability it must also have high 
external reliability, and conversely low internal reliability reflects low 
external reliability. 

5 . 4 . 2 Variance ratio tests 

5.4.2 .1 The testing procedure 

There are a number of situations in which it is required to compare the 
variances (or standard errors) of two samples to discover whether or not theY 
come from populations with the same variances. For instance, one variance maY 
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have been computed from angles measured by observer A and another from those 
measured by observer 8 and it may be required (perhaps for the purposes of 
weighting) to find out if the two observers are performing with the same 

precision. Further examples will be given after the test has been described. 

Let s1 and s 2 be the variances of samples 1 and 2 computed with v1 and v2 
degrees of freedom. If a 1 and a

2 
are the (unknown) variances of the two 

populations from which the samples have been drawn we set up the two-sided 
test as follows: 

(5.41) 

(5.42) 

It can be shown, e.g. in Mood and Graybill (1963), that F, given by 

F = (5 .4J) 

where s1 > s 2 , has the F distribution given in (5.13) with v1 and v2 degrees 
of freedom. Hence the testing procedure is to select a level of significance, 
a, and look up the percentile for v1 and v2 in the appropriate F distribution 
table. Note that since we are setting up a two-sided test it is necessary to 
double the probabilities in the F distribution table,i.e. use the table for 
a/2. If the alternative hypothesis was 

(5 .44) 

we would have a one-sided test and would use the table for a. 

Once we have looked up the appropriate value of the percentile, we simply 
compare it with our statistic computed by (5.43). If the statistic is the 
larger we reject t he null hypothesis with a probability of a of making a type 
1 error; otherwise we accept the null hypothesis. 

As an example say that s1 is .estimated to be 6.0 with 40 degrees of freedom, 
s2 is estimated to be 3.2 with 10 degrees of freedom, and we wish to make the 
two-sided test (5.41) and (5.42) with a= 0.02 (2%). We look up the necessary 
percentile in Table 5 .5 (at the 1% level) with v1 = 40 and v2 = 10 to obtain 
4.17. We then compute the F statistic from (5.43) as 

F = (6.0/3.2) 2 = 3.52 

and since F is less than 4.17 we would accept the null hypothesis (i.e. that 
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the two samples come from populations with t he same variance) at the 2% level . 

5.4.2.2 Examples of variance ratio tests 

(i) Unit variance 

Probably the most important application of the variance rat io test is 
the testing of the proximity to unity of t he uni t variance computed 

from 

2 
s = 

0 
(vTwv)/(n - m) (5.45) 

after a least squares position-fix computation . Notice t hat the 
·notation in (5.45) has been deliberately changed from (4.25) with s 

0 

replacing a . This is to conform with the notat ion of this section 
0 

(Greek and Roman letters for population an d sample statistics 
respectively). The test is set up as follows (note s is our estimate 

0 

of a ) 
0 

Ho: 
2 1 a = 0 

(5.46) 

HA: 2 
~ 1 a 

0 
(5.47) 

and F is computed as in either (a) or ( b ) below. 

(a) If s > 1 
0 

F s 2/1 2 
;::, = s 

0 0 
(5.48) 

\Jl ;::, n - m, \)2 ::. CX) 

(b) If s < 1 
0 

F 1/s 2 
= 0 

(5. 49) 

2 As an example suppose (n m) is 6 and s = 2.46, and we wish to set 
0 

a level of confidence of 90% (~ = 0.10). The 0.05 (i. e . ~/2) F t able 
(Table 5.5) gives, for -v1 = 6 and -v2 = CX)' a percentile of 2.10. Hen~ ~ 
computing F from (5.48) as 2.46 would lead to the rejection of t he nu~ ~ 

t 

hypothesis and the conclusion that our value for t he unit variance w• i 
1 

significantly different from unity (with a 10% chance of making a ty~ l 
error). 
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1 

It was remarked in 4.2.4 that in some position-fixing problems (e . g. on 
a moving vessel) the unit variance is best estimated by averaging a 

large number of separately determined values . In such cases the above 
test is carried out exactly as described but with ~(n - m) - 1 degrees 
of freedom rather than (n m). 

It is interesting to note that when ~2 , or ~1 , is m, as is the case for 
unit variance testing, then the f statistic, or its reciprical, has a 
x2 distribution. Hence it is possible to use the x2 tables instead of 
the f tables. For an example of how to do this see Mikhail and Gracie 

(1981, 219-220) . 

It should be mentioned that if the null hypothesis is rejected, i.e . 
if it is decided that a is significantly different from unity, there 

0 
are two possible interpretations (assuming that there are no gross 
errors). The first, discussed in detail in 4.2.4, is that the 

2 assigned a priori covariance matrix needs to be multiplied by s , and 
0 

the second is that the model used for the l east squares computation is 
incorrect or incomplete. for instance, if a scale error exists in a 
distance measuring system, and it is not modelled, unexpectedly large 
residuals would arise, mainly in the corresponding distance equations 
(note that this would only occur if there was some other scale input 
into the system, e.g. via more than one fixed point). It is usually 
very difficult to choose between the two interpretations. Obviously if 
we were absolutely sure of our a priori variances we could deduce an 
incomplete model and vice versa but such confidence rarely exists in 
practice. 

(ii) Comparison of instrument or observer performance 

To find out whether or not there is any significant difference between 
the performance of various observers or instruments the F test is 
applied exactly as in the example in 5.4.2.1. If we merely wish to 
determine whether or not their performance is different we use a two-
sided test but if we wish to test whether or not one instrument or 
observer is better than another we use a one-sided test. The sample 
variances may come either from repeated measurements or from the 
results of a least squares computation (via the covariance matrix C~). 
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(iii) Test of observing conditions 

If we have observed under certain conditions and later repeated the 
measurements (or made similar measurements) under different conditions, 
we can use the F test to determine whether or not the change in 
conditions has significantly affected the precision of the measurements, 
The procedure is exactly as in the example in 5.4.2.1. 

For example, when carrying out the retriangulation of Great Britain the 
Ordnance Survey made most of their angle measurements in East Anglia on 
towers because of the very flat ground and it is obviously relevant 
(e.g. for assigning Ct in a least squares compuation) to question 
whether or not using towers significantly degraded the precision of 
angle measurement. The tables of triangle misclosures in Ordnance 
Survey (1967) give the data needed to answer this question by means of 

the F test. 

5.4.3 Comparison of means 

5.4.3.1 Between two samples 

Suppose we measure a distance many times with one instrument and then repeat 
the process with another and hence determine two mean distances, xl and x2, 
from the first and second instruments respectively. We may wish to know 
whether or not the difference between the two means is significant, i.e. 
whether or not one of the instruments produces a significantly different 
measurement to the other. If so we would conclude that there was some kind 
of systematic error in one (or perhaps both) of the instruments. Alternativd 
we may have carried out the two sets of measurements at different epochs with 
well calibrated instruments and a significant difference could now be • 
interpreted as a change in the distance (crustal movement). We can set up a 

test for the above as follows: let ~l and ~2 be the population means 
estimated by xl and x2; then we have the two-sided test 

(5.50) 

(5.51) 

where the bracketed alternatives relate to a one-sided test. 

If s 1 and s 2 are the two sample standard errors and n1 and n2 the number of 
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measurements in each sample it can be shown, e . g. in Mood and Graybill (1963), 
that the statistic 

(5.52) 

will have a t distribution with v degrees of freedom where 

and 
v = n1 + n2 - 2 

2 2 2 s = (s1 (n1 - 1) + s 2 (n2 - 1))/v 

The procedure then is to select a, compute t from (5.52) and look up the 
relevant percentile in Table 5.4. Then, if t is greater than the percentile 
we reject the null hypothesis and otherwise we accept it. 

For exampl e 

xl = 146.214 sl = 0.011 nl = 8 

and 

x2 = 146.206 s2 = 0.006 n2 = 12 

then V = 18 and, if we choose to perform a two-sided test with a= 0. 10, we 
look up the percentile in Table 5.4 and obtain a value of 1 . 734. t computed 
from (5.47) is 2.109 so we reject the null hypothesis at the 10% level of 
significance (10% chance of a type 1 error) and conclude that the difference 

between xl and x2 is significant . 

5.4.3.2 Between one sample and a known value 

Sometimes we may wish to compare a mean not with another mean but with a known 
value, for instance when calibrating a distance measuring device over a known 
distance or testing a navigation system by repeatedly fixing a known 
stationary point. In these circumstances we proceed exactly as in 5. 4.3.1 
but the test statistic (5.47) becomes 

t = (5.5~ 

-where x is the mean from n measurements and s its standard error. ~ is the 
known value of the quantity (i.e. the population mean) and the t tables are 

used with v = n - 1. 

Notice that (5.52) can be written in the form 
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where s-
x 

t = (x - ~)/s-x 
~ 

s/n2 is the standard error of the mean x. 

(5.54) 

In this form i t can be 
used to test the significance of certain results from a least squares 

computation. for instance, when we have included non-positional unknowns in 
the parameters of a least squares computation we may wish to question whether 
or not the quantities they are modelling actually exist (i.e. whether or not 
there really was any need to model them in the first place). We can proceed 
as follows. 

Let p be the least squares estimate of a parameter with true value p . We have 

= 0 

0 

then, if s is the standard error of p (obtained by taking the square root of 
p 

the relevant diagonal element of c~), (5.54) becomes 
X 

t = (p - 0)/s 
p = P Is p 

(5.55) 

and the test is carried out exactly as in 5.4.3.1 with the num ber of degrees 
of freedom given by ~ - 1, where ~ is the number of observation equations 
containing the parameter. 

5.4.4 Goodness of fit 

Throughout this discussion of statistical testing we have assumed that the 
underlying pdf of our observational errors is normal. Although (as discussed 
in 5.2.3) there are good reasons for doing this we may nevertheless wish to 
test this assumption. for example, we may suspect that some non-random 
influence is interfering in some way with our measurement process. Hence we 
need a procedure for testing the "distribution" of our data. 

Although the goodness of fit test to be described can i n fact be used to test 
the goodness of fit to any distribution, this section is directed specificalU 
at the normal distribution since, in practical position-fixi ng , we are reallY 
only interested in this distribution. Hence we formulate the test as follo~ · 

• • •' X n are normally distributed with mean x and variance s 2 

HA: x1, x2 , ••. , xn are not normally distributed wit h mean x and variance s• 
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y 

where x1, x2 , ••• , xn are then variates in whose pdf we are interested and x 
and ~2 are computed in the usual way from these n variates. 

The procedure is essentially to split the data into a number, say p, of equal 
classes and to draw a his.togram. If Oi is the number of variates in the ith 
class and E. is the number expected in a normal distribution (computed from 

~ 

Table 5.2) it can be shown, e.g. Mood and Graybill (1963), that the statistic 
p 

x2 = I ((oi 2 E.) /E.) 
~ ~ 

(5 . 56) 
i=l 

2 has the x distribution with p-3 degrees of freedom. Strictly speaking the 
number of degrees of freedom is p-1-q where q is the number of statistics 

drawn from the sample. In the above case q = 2: x and s 2 . If the mean and 
standard error were known the null hypothesis would be 

... ' X n are normally distributed with mean ~ and variance cr2 

so we would have q = 0 and there would be p - 1 degrees of freedom. 

First we select a level of significance ~ and look up the relevant percentile 
2 2 in the x tables (Table 5.3). We then simply compare our value of x from 

(5.56) with this percentile and if the percentile is greater we accept the null 
hypothesis; otherwise we reject it. 

There may be a problem with the choice of class-width when dividing the sample 
and with the cut-off at the two ends of the pdf. The latter arises because E. 

~ 

becomes very small as the size of the variate increases. If readers are 
particularly concerned with this they can consult Mann and Wald (1942) . 

2 The x goodness of fit test is most commonly applied to sets of least squares 
residuals. For instance it is standard practice when computing a geodetic 
satellite-Doppler fix to check the normality of the two hundred or so residuals 
from each satellite pass. If it is decided that the residuals are not normally 
distributed it would be usual to reject the complete pass fr om the position-fix 
computation. Similarly, the residuals from a large triangulation network may 
be checked in this way. Although it is unlikely that the network would be 
rejected if the residuals failed the test it may uncover some non-random aspect 
of the observing procedure or possibly a modelling error. 

5.5 Concluding remarks 

All the foregoing statistical tests are based on a level of confidence (1 - ~ ) 

- 89-

I i 

I 



P
au

l A
 C

ro
ss

- U
C

L----------- -- -

which must be subjectively assigned by the individuals carrying them out. 

Generally tests are performed at the 95% and/or 99% level of confidence 
(a= 0. 05 or 0.01) and values of the statistic larger than the relevant 

percentile are termed "significant'' or "highly significant" respectively. 
It is fairly common to consider that if the null hypothesis is accepted at 
the significant level (95%) or rejected at the highly significant level (99%) 
then there is no need to question the data further, whereas in between 
(rejection at 95% but not at 99%) it would be usual to look for some other 
evidence upon which to base a decision. 

It cannot be emphasised too strongl y that we can never be absolutely certain 
of anything as a result of a statistical test. The level of confidence 
cannot be set too close to l OO% as the probability of type 2 errors would 
become unacceptable . Hence we shoul d view statistical testing simply as a 
means (albeit a very valuable one ) of procuring evidence, which, along with 
other evidence, can help the process of making decisions based on the 
observed data (and on information computed from them, e . g. positions) . 
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0 2 4 6 9 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

. I .5398 .5438 .5478 .5517 .5551 .5596 .5636 .5675 .5714 .5753 

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 . . 6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 Jl: 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .75 17 .7549 I 
I 

.7 .7580 .7611 .7642 .7673 .7703 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .81!!6 .8212 .8238 .8264 .8289 .83 15 .8340 :8365 .8389 
1_il .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
I. .86<-: .866< .&686 .~7:.>8 .872'1 .8749 .8770 .8790 .8810 .8830 
!.:: .S8-i~: .,..~1)9 .8888 .89•)7 .8925 .8944 .8962 .8980 .8997 .9015 
1.3 9032 .9Qd9 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 
1.4 ,g192 .9207 .922:.! .9236 .9251 .9265 .9278 .9292 .9306 .9319 
l..:i .933:? .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9430 .9441 
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 
1.8 .9641 .9648 .9656 .9664 .9671 .9678 .9686 .9693 .9700 .9706 
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9762 .9767 
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .980& .9812 .9817 
2.1 .982! .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 
2.2 .986! .9864 .9868 .9871 .9874 .9878 .9881 .9884 .9887 .9890 
2.3 .989~ 3896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 Q920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 
2.5 .9938 .:;'940 _';)~: .. ~94~ .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .99.:: .9955 S:}56 .9957 .9959 .9960 .9961 .9962 .9963 .9964 
2.7 .9~65 .9~-66 .9967 .~::68 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .~975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 
2.9 .9981 .9982 .9982 .9983 .99!!4 .9984 .9985 .9985 .9986 .9986 
3. .9987 .9990 .9993 .9995 .9997 .9998 .9998 .9999 .9999 1.0000 

~-

Table 5 . 2 Area under the normal curve 

Source : Mikhail and Gracie (1981, 326) 
where it is .reproduced from Introduction 
to Probabilit~ and Statistics by B W Lindgren 
and G W McElrath (Macmillan, New York, 1969) 

Reproduced by permission of the publishers 
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Degreu of 1 6 90 95 99 99·9 
Jreed<rm (,.) 

1 0·03157 ' 0·00393 2,71 3·84 6·63 10·83 
2 0·0201 0 ·103 4·61 5·99 9·21 13·81 
3 O·ll5 0·352 6·25 7·81 11·34 16·27 
4 0·297 0·711 7·78 9·49 13·28 18·47 

6 0·554 1-15 9·24 11 ·07 15·09 20·52 
5 0·872 1·64 10•64 12·159 16·81 22·46 
7 1·24 2·17 12·02 14·07 18·48 24·32 
8 1·65 2·73 13·36 15·51 20·09 26·12 
9 2 ·09 3·33 14·68 16·92 21 ·67 27·88 

10 2 ·56 3 ·94 15·99 18·31 23·21 29·59 
11 3·05 4·57 17·28 19·68 24·73 31·26 
12 3·57 5·23 18·55 21·03 26·22 32·91 
14 4·66 6·57 21·06 23·68 29·14 36·12 
J.f 5·!!! 7·96 23·54 26·30 32·00 39·25 
18 7 ·1)! 9·39 25·99 28·87 34·81 42·31 
20 8·25 10·85 28·41 31·41 37·57 45·31 
22 9·54 12·34 30·81 33·92 40·29 48·27 
24 10·86 13·85 33·20 36·42 42·98 51-18 
26 E ;.20 15·38 35·56 38·89 45·64 54·05 

~I ' 28 13·56 16·93 37·92 41·34 48·28 56·89 
·I 30 14·95 18·49 40·26 43·77 50·89 59·70 I 

I' 

- 2 .Table 5.3 PercentilE's of the X distri bution .. 
Source: Wether ill G 8 1982 Elementar:t Statistical 
Methods 3rd edition Chapman and Hall London 
356 pp page 327 

Reproduced by permission of the publishers 
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Distribution of r 

Degrees of 
freedom 

V 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
60 

120 
CO 

Table 5.4 

~ 
-r 0 I 

Probability a 

0.10 0.05 0.01 0.001 

6.3 14 12.706 63.657 636.619 
2.920 4.303 9.925 31.598 
2.353 3.182 5.841 12.941 
2.132 2.776 4.604 8.610 
2.015 2.571 4.032 6.859 

1.943 2.447 3.707 5.959 
1.895 2.365 3.499 5.405 
1.860 2.306 3.355 5.041 
1.833 2.262 3.250 4.781 
1.812 2.228 3.169 4.587 

1.796 2201 3.106 4.437 
1.782 2.179 3.055 4.318 
1.771 2.160 3.012 4.221 
1.76"1 2.145 2.977 4.140 
1.753 2.131 2947 4.073 

1.746 2120 2921 4.015 
1.740 2.110 2.898 3.965 
1.734 2101 2.878 3.922 
1.729 2093 2.861 3.883 
1.725 2.086 2.845 3.850 

1.721 2.080 2.831 3.819 
1.717 2.074 2.8 19 3.792 
1.714 2.069 2.807 3.767 
1.711 2064 2.797 3.745 
1.708 2.060 2.787 3.725 

1.706 2.056 2.779 3.707 
1.703 2.052 2.771 3.690 
1.701 2048 2. 763 3.674 
1.699 2.045 2.756 3.659 
1.697 2.042 2.750 3.646 

1.684 2.021 2.704 3.551 
1.671 2.000 2660 3.460 
1.658 1.980 2.617 3.373 
1.645 1.960 2.576 3.291 

Percentiles of the t distribution 

Source: Kennedy and Neville (1976, 457) 
where it is taken from Table III, page 46 of 
Statistical Tables for Biological, Agricultural 
and Medical Research by Fisher and Yates 
(6th edition, Longman, London: previously 
published by Dliver and Boyd, Edinburgh) 

Reproduced by permission of the authors and 
publishers 
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Paul A Cross- UCL

5% level of significance I~ 
0 F 

~I I 2 J 4 5 6 7 8 9 10 12 / 5 20 24 JO 40 60 /20 CO 
Vl 

I 161.45 199.50 215.7 1 224.58 230. 16 233.99 236.77 238.88 240.54 241.88 243.9 1 245.95 248.01 249.05 250.09 251.14 252.20 253 .25 254.32 
2 • 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50 
3 10. 13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 
4 7.71 6.94 6.59 6.39 6.26 6. 16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.17 5.75 5.72 5.69 5.66 5.63 
5 6.61 5.79 5.41 5. 19 5.05 4.95 · 4.88 4.8'? 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4. 15 4. 10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 
7 5.59 4 .74 4.35 4. 12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.21 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 104 3.01 2.97 2.93 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.84 2.77 2.74 2.70 2.66 2.62 2.58 2.54 

ll 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 
12 4.15 3.89. 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2 .30 
13 4.67 3.8 1 3.41 3.18 3.03 2.92 2.83 2.77 2.7 1 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2 .30 2.25 2.21 
14 4.60 3.74 3.34 3. 11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.3 1 2.27 2.22 2. 18 2. 13 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.7 1 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2. 11 2.07 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2. 19 2. 15 2. 11 2.06. 2.01 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.3 I 2.23 2.19 2.15 2.10 2.06 2.01 1.96 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.5 1 2.46 2.41 2.34 2.27 2.19 2.15 2. 11 2.06 2.02 1.97 1.92 

1.0 19 4.38 3.52 3. 13 2.90 2.74 2.63 2. 54 2.48 2.42 2.38 2.3 1 2.23 2. 16 2.11 2.07 2.03 1.98 1.9J 1.88 
.t>- 20 4.35 3.49 3. 10 2.87 2.71 2.60 2.51 2.45 2.39 :us 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84 
I 21 4.32 3.47 3.07 2.84 2.68 2.57 2 .49 . 2.42 2.37 2.3 2 2.25 2. 18 2.10 2.05 2.01 1.96 1.92 1.87 1.81 

22 4.)0 3.44 3.05 2.82 2.66 2.55 2.41) 2.40 2.34 2.30 2.23 2.15 2.07 2 .0) 1.98 1.94 1.89 1.84 1.78 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.J2 2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.86 1.81 1.76 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2. 18 2. 11 2.03 1.98 1.94 1.89 1.84 1.19 1.73 
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 I. 71 
26 4.2J 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07' 1.99 1.95 1.90 1.85 1.80 1.75 1.69 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.70 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2. 19 2. 12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65 
29 4. 18 3.33 2.93 2.70 2.55 2.4) 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64 
30 4. 17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62 

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 Ut 
60 4.00 3.15 2.76 : .. 53 :'17 2.25 2. 17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 t.Sl 1.47 l.l9 

120 3.92 3.07 2.68 2.45 2.2S 2. 18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25 
CO 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 • 1.83 1.75 1.67 1.57 I.S2 1.46 1.39 1.32 1.22 1.00 

Table 5.5 Percentiles of the F dis tribution 
Source: Kennedy and Neville (1976, 46(1-461) wher"' 
,it . .. , . ,..,d fr· •m ~"'t'.stics Manual by E L Crow, 
F A Oavies and M w Maxfield (Dover, New York, 1960) 

Reproduced by p ermission of the publishers 
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1% .. ... . . ., . rf e..:.g . ·' .l ·.i..r ... nca ... 

' .. 1 2 3 4 .5 6 7 8 9 10 12 1.5 20 24 30 40 60 120 • J 00 
Vl ' 1 4,052.4 4,999.5 5,403.3 5,624.6 5,763 .7 5,859.0 5,928.3 5,981.6 6,022.5 6,055.8 6,106.3 6,157.3 6.208.7 6,234.6 6,260.7 6.286.8 6,313.0 6,339.4 6,366.0 

2 98.50 99.00 99. ]7 99.25 99.30 99.33 99 .36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50 
3 34. 1'2 30.82 29.46 28.71 28.24 27 .9 1 27.67 27.49 27.34 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 25.22 26.12 
4 21.20 18.00 16.69 15.98 j ~ . 52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.74 13.65 13.56 '3.46 
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10. 16 10.05 .9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02 
6 13.74 10.92 9.78 9. 15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7. 14 7.06 6.97 6.88 
7 12.25 9.55 8.45 7.85 7.46 7. 19 6.99 U4 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65 
8 11.26 8.65 7.59 7.01 6.63 6.37 6. 18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4 .95 4.86 
9 1 0 . ~6 8.02 ~ .99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.8 1 4.73 4.65 4.57 4.48 4.40 4.31 

10 10.04 7.56 6.55 5.99 5.64 5.39 L!O 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4 .00 3.9 1 

11 9.65 7.2 1 6.22 5.67 5.32 5.07 4.89 04 4.63 4.54 4.40 4.25 4. 10 4.02 3.94 3.86 3.78 3.69 3.60 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4. 30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36 
13 9.07 6.70 5.74 5.21 4.86 4.62 4 .44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.5 1 3.43 3.34 3.25 3.17 
14 8.86 6.5 1 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 '!.27 3.18 3.09 3.00 
15 8.68 6.36 5.42 4.89 4.56 4.32 4. 14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87 
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3. 55 3.41 3.26 3. 18 3.10 3.02 2.93 2.84 2.75 
17 8.40 6. 11 5. 18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.3 1 3. 16 3.08 3.00 2.92 2.83 2.75 . 2.65 

1.0 
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3. 71 3.60 3.51 3.37 3.23 3.08 3.00 2 .92 2.84 2.75 2.66 2.57 
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49 U1 20 8.10 5.85 4.94 4.43 4. 10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42 

21 8.02 5.78 4.87 4.3 7 4.04 3.81 3.64 3.5 1 3.40 3.31 3. 17 3.03, 2.88 2.80 2.72 2.64 2.55 2.46 2.36 
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31 
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26 
24 7.82 5.61 4.72 4.22 3.90 3.67 . 3.50 3.36 3.26 3. 17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 i .3 1 2.2 1 
25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.17 2.17 

• 26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3. 18 3.09 2.96 2.82 2.66 2.58 2.50 2.42 2.33 2.23 2.13 
27 7.68 5.49 4.60 4 .11 3.78 3.56 3.39 3.26 3. 15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10 
28 '7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2. 17 2.06 
29 7.60 5.42 4.54 4.04 3. 73 3.50 ).JJ 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2. 14 2.03 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 ~. 17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2. 11 2.01 

40 7.31 5. 18 4.31 3.83 3.51 3.29 3. 12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2. 11 2.02 1.92 1.80 
60 7.08 4.98 4. 13 3.65 3.34 3. 12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60 

120 6.85 4.79 3.95 3.48 3. 17 2.96 2.79 2.66 2.56 2.47 2.34 2. 19 2.03 J.9S 1.86 1.76 1.66 U3 1.38 
00 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.5 1 2.41 2.32 2.18 1.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00 

Tabi e 5 .5 ( conti nu3d ) 
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NT=NO. OF OBSERVATIONS 
NU:DEGREES OF FREEDOH 

REJECTION LEVEL=0.01 (PROBABILITY OF A TYPE-I ERROR) 

NU 
1.1 6 8 10 12 11.1 16 18 20 30 1.10 50 60 70 80 90 100 110 130 150 

NT 
8 1.98 2.32 

10 1.98 2.33 2.5~ 
12 1.98 2.31.1 2.56 2.70 
11.1 1.99 2.34 2 .57 2.71 2.82 
16 1.99 2.35 2.58 2.73 2.83 2.91 
18 1.99 2.35 2.59 2.71.1 2.85 2.93 2.99 
20 1.99 2.36 2.59 2.75 2.86 2.94 3.01 3.06 

~ 30 1.99 2.37 2.62 2.79 2.91 3.00 3.06 3.12 3.16 
40 1.99 2.38 2.61.1 2.81 2.91.1 3.03 3.10 3.16 3.21 3.35 
50 1.99 2.39 2.65 2.83 2.96 3.06 3.13 3.19 3.21.1 3.39 3.47 
60 1.99 2.39 2.66 2.84 2.98 3.08 3.16 3.22 3.27 3.1.13 3.51 3.56 
70 2.00 2.39 2.67 2.85 2.99 3.09 3.17 3.24 3.29 3.45 3.54 3.59 3.62 
80 2.00 2.40 2.67 2.86 3.00 3.1 1 3.19 3.26 3.31 3.48 3.56 3.62 3.65 3.68 
90 2.00 2.40 2.68 2 .87 3.01 3.12 3.20 3.27 3.33 3.50 3.58 3.64 3.68 3.70 3.72 

100 2.00 2.40 2.68 2.88 3.02 3.13 3.22 3.28 3.34 3.51 3.60 3.66 3.70 3.72 3.74 3.76 
150 2.00 2.41 2.70 2.90 3.05 3.17 3.26 3.33 3.39 3.58 3.68 3.74 3.78 3.81 3.83 3.85 3.86 3.87 3. 89 
200 2.00 2.1.11 2.71 2.92 3.08 3.20 3.29 3. 37 3.1.13 3.62 3.73 3.79 3.83 3.86 3.89 3.91 3.92 3.93 3.95 3.96 
250 2.00 2.42 2.72 2.93 3.09 3.22 3.31 3.39 3.46 3.66 3.77 3.83 3. 88 3.91 3.93 3.95 3.97 3.98 1.1.00 4.01 
300 2.00 2.42 2.72 2.91.1 3.11 3.23 3.33 3.41 3.1.18 3.69 3.80 3.86 3.91 3.94 3.97 3.99 4.00 4.02 4.04 4.05 
350 2.00 2.42 2.73 2.95 3.12 3.24 3.35 3.43 3.50 3.71 3.82 3.89 3.91.1 3.97 1.1.00 1.1.02 4.03 4.05 4.07 1.1.08 
1.100 2.00 2.42 2.73 2.96 3.1 2 3.25 3.36 3.1.11.1 3.51 3.73 3.8!1 3.91 3.96 4.00 1.1.02 4.04 1.1.06 4.07 4.10 4.11 

Table 5.6 Some critical values of tau 
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~ Justification of least squares 

In section 3 the least squares solution was defined as the one which minimi sed 

a specified quadratic form, viz. 

T minimum v Wv = (3 . 6) 

where 
w - 1 = c..e (3 . 7) 

It is quite natural to ask the question: why use (3.6) and (3.7)? Why not use 
some other function for example rather than least squares ((3 . 6) when W = I) 

2 2 2 minimum vl + v2 + ... + V = n (6.1) 

why not have least cubes 
3 3 3 minimum vl + v2 + ... + V = n (6.2) 

or least product 

vlv2v3 V = minimum n (6 . 3) 

etc? 

To justify the use of (3 . 6) and (3.7) we will now derive and analyse the 
statistical properties of estimates computed by the least squares method and 
it will be seen that, from a number of different statistical points of view, 
the least squares estimates can be described as the "best estimates" . To 
avoid lengthy algebra, discussion will be l imited to the special case of 
observation equations but all results can be extended to the more general 
combined least squares problem. 

Each of the following sections 6.1 to 6 . 4 considers a particular statistical 
property of Q, the least squares estimate of the parameters from an ~ 

observation equations model. 6.5 includes a summary of all properties and of 
the history of least squares, and some practical points are made in 6.6. 

6.1 Unbiased estimate 

To prove that xis unbiased it is necessary to show, from (4 . 1D),that 

E(Q) = X (6.4) 

We start with (2.22), the basic linearised mathematical model for the case of 
observation equations, 
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Ax = b + v 

or 
b = Ax - v 

= Ax + e 

where e is the vector of true errors (from (2.1) and (2.2)). Taking 

expectations in (6.6) gives 

E(b) = AE(x) + E(e) 

(2.22) 

(6.5) 

(6.6) 

(6.7) 

but obviously the expected value of the true errors is zero, E(e) = D; hence 

we have 

E(b) = 

= 

Now, from (3.41), 

1'\ 
X 

E(~) 

= 

= 

AE(x) 

Ax (for true values) 

(ATWA)-lATWb 

(ATWA)-lATWE(b) 

Substituting (6.9) in (6.10) gives 

E(~) = 

= X 

(6.8) 

(6.9) 

(3 .41) 

(6.10) 

(6.11) 

(6.12) 

Which is the same as (6.4). Hence we can say that the least squares estimate 
is unbiased, i.e. on average the least squares solution is equal to the true 
solution. It is worth noting that the above proof does not rely in any way on 

the contents of W, and so the least squares estimate is unbiased irrespective 
of the choice of W. 

6.2 Minimum trace of the covariance matrix of the parameters 

It is reasonable to say that the best estimate of a quantity is the one with 
the minimum variance because, given the choice of two estimates, one with a 
large variance and the other with a small variance, we would obviously choose 
the one with the smaller variance. Hence we would like to have some estimate 
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e 

of x, say x', for which the covariance matrix C 1 was smaller than the 
X 

covariance matrix for any other estimate. Since the words large and small do 
not have a single meaning where matrices are concerned, we need to define some 
property of C , that we require to be minimum . In this section we will 

X 
minimise the trace of C ,, i.e. we will seek an estimate for which the sum 

X 
(and hence the mean) of the variances of the parameters is a minimum . In 6 . 3 
a different property of C 1 will be considered. X 

The argument here will be restricted to linear unbiased estimates, i.e. 

x' = Qb (6.13) 

If x1 is unbiased 

E(x 1 ) = X (6.14) 

and, from (6.13), 

E(x1 ) = QE(b) (6.15) 

Substituting (6.9) in (6 .15) gives 

E(x 1 ) = QAx (6 .16) 

and combining (6.14) and (6.16) leads to 

QA = I (6 .17) 

Now applying (4.16) to (6.13) gives 

(6.18) 

Hence the problem is to find a linear transformation, Q, which satisfies (6.17) 
T ~ 

whilst minimising the trace of QCbQ , i.e. we require 

T Tr(QCbQ ) = minimum (6.19) 

Subject to 

QA - I = 0 (6.20) 

We use Lagrange 1 s method of undetermined multipliers given in (3 .12) and write 
the complete Lagrangian function using the trace notation 
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wnere K is a matrix of correlatives. To minimise we differentiate witO respect 

to Q and equate to zero, i.e. 

T Tr(QCbQ ) + 2 Tr(QAK) - 2 Tr ( IK) 

(6.21) or 

(6.22) 

b~ - == 0 
bQ 

which leads to (6.23) 

2acb + 
2 KT AT - 0 :::: 0 

giving ( 6. 24) 

and (6.25) 

Postmultiplying (6.25) by A gives (6.26) 

and substituting (6 .26 ) into (6.17) gives 
(6.27) 

I 

which re- arranges to (6 .28) 

Substituting (6 . 28) into (6.25) gives (6.29) 

Hence, from (6.13), tOe estimate of x wnicO leads to a covariance matrix of 

parameters with a minimum trace is 

Q == 

(6.30) 

x' == 

The least squares estimate from (3.4l)is 
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(3.41) 

and i t is obvious from (6.30) and (3.41) that the least squares estimate is . 
the minimum trace estimate so long as we put 

-1 

-1 W = eb • The basic definition 
of least squares actually puts W = et , but it is clear from (4.38) that for 
the special case of observation equations eb = et. Hence it has been proved 
that the least squares process, as defined by (3.6) and (3.7), yields an 
estimate with a covariance matrix that has a smaller trace (i.e. smaller sum 
of V8l:'iances) than any other linear unbiased estimate. 

6.3 Minimum variance of derived quantities 

In 4.4.3 the computation of the variances and covariances of a set of 
quantities q derived from the least squares estimates of the parameters was 
shown and it was explained that such variances and covariances were extremely 
useful in practice as they are closely related to the probable use of the 
parameters. Here we consider a single quantity W whose least squares estimate 
is given by 

where 

" T" W = 5 X (6.31) 

2 and it will be shown that the variance of ~' a , is less t han the variance, 
rtt 

2 , of ilr • t d f th 1· b · d t · t f ' Wh t v , compu e rom any o er 1near un 1ase es 1ma e o x , x . a 
follows is an extension of the proof given in Sunter (1966) for the special 
case of w = I. 

Let x' = x + 6x (6. 32) 

then 

~~ 
T x' T T 

= s = s X + s ox (6.33) 

Also, if x' is a linear estimate of x we can write it in the form of a linear 

transformation of b 

(6. 34) 
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i.e. it is the least squares transformation of b 

(6.35) 

plus an additional amount. Combining (6.34) and (6.35) gives 

x' " = x + UWb (6.36) 

which when substituted into (6.32) gives 

6x = UWb (6.37) 

Substituting (6 . 37) i n (6 . 33) results in 

~· 
Tl\ T = s x + s UWb (6 . 38) 

and putting 

tT = sTU (6.39) 

gives 

= (6 . 40) 

Taking expectations yiel ds 

(6 . 41) 

Substituting (6.12) and (6 . 9) in (6.41) gives 

T T 
E (~t) = s x + t WAx (6.42) 

but since W' is an unbiased estimate of W (because x' is defined as an 
" unbiased estimate of x) we have 

which, on using (6 . 31) with true values, becomes 

T ECw') = s x 

Then it is evident from (6 . 42) and (6 . 44) that 

T 
t WAx = 0 
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Also if (6.45) is to be true for all x we can deduce that 

tTWA = 0 (6 . 46) 

and 

(6.47) 

We now substitute (6.35) into (6.40) to yield 

(6.48) 

and applying (4.16) to (6.48) gives 

a• 2 = [sT(ATWA)-lATW + tTw] Cb [sT(ATWA)-lATW + tTW~ (6.49) 

Since, for observation equations, Cb = C~ = W-l (from (4.38)), multiplying 
out (6.49) gives 

a 12 = sT(ATWA)-lATWW-1WA(ATWA)-1s + tTWW-1WA(ATWA)-ls 

+ s T (ATWA)-1A TWW-1Wt + t TWW-1Wt (6 .50 ) 

Using (6.46) and (6.47) we see that the middle two terms are zero giving 

which, from (4.67), reduces to 

2 
a• = sTCAs + tTWt 

X 

Now applying (4.16) to (6.31) gives 

T = s CI\S 
X 

so from (6.52) and (6.53) we have 

2 
a' = 

(6.51) 

(6.52) 

(6.54) 

Now assuming W to be positive-definitive (which it will always be, because it 
is obtained by inverting the positive-definite matrix C~), t TWt must be a 
positive number, irrespective of t, and it follows that a• 2 must be greater 

1"2 than a • 

Hence if we compute, say, a distance from the least squares estimates of some 
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coordinates, then that distance will have a smaller variance than a similar 
distance computed from any other linear unbiased estimate of the coordinates. 
The general theorem that has been proved here is known as the Gauss-Markov 
theorem and it represents the single most important justification for adopting 
t he least squares procedure. 

6.4 Maximum likelihood 

An estimate is said to be the maximum likelihood estimate when it maximises 

the value of the probability density function of the observational errors. If 
we assume that the true errors (and hence the true residuals) are from a 
multivariate normal distribution, their pdf can be written as in (5.9) as 

= { T -1 } constant x exp - t v C~ v (6.55) 

Clearly (6.55) will be maximised if vTCt-lv is minimised. Hence, so long as 
the observational errors have a normal distribution, we can say that the least 
squares estimate is the maximum likelihood estimate. 

The exact meaning of the term maximum likelihood is complex and its full 
explanation is beyond the scope of this paper: interested readers are 
recommended to study Mood and Graybill (1963, chapter 8) for a detailed 
discussion of the matter or Thompson (1969, chapter 10) for a simpler, but le~ 
rigorous, discussion. Here we merely mention that the term is almost 
equivalent to "most probable" but it is applied to estimated parameters rather 
than to the observed quantities. 

6.5 Summary and historical background 

It has been shown in 6.1 to 6.3 that, no matter what the pdf of the observati~ 
• r 

errors, in particular irrespective of whether or not they are normally distri~ 
buted, the least squares estimate has the following two properties: 

(i) 

(ii) 

it is unbiased 

it has a minimum variance (in the sense that Tr(CA) is a minimum and 
X 

that the variance of a derived quantity is a minimum). 

As a result of these properties, the least squares estimate is often referred 
to as the BLUE or .§_est (because of minimum variance) Linear Unbiased fstimate. 

Also it has been shown, in 6.4, that if the observational errors are normallY 
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distributed than the least squares estimate has the additional property of 
being the maximum likelihood estimate. 

There seems to have been some confusion within the surveying profession as to · 
the proper statistical justification of the least squares procedure, 
especially with regard to whether or not observations need to be normally 
distributed. For instance Rainsford (1957) states, 

"Once the normal law of error has been accepted, all other results, such as 
the principle of least squares ••• follow logically from it". 

And Gale (1965) states, 

"The least squares principle is derived from the normal dis tribution function 
11 . . . . 

Although neither of these statements is wrong they are over-restrictive and 
have been interpreted by many as implying that a normal pdf must exist before 
least squares should be used. To help explain how this confusion arose, and 
because it is interesting for its own sake, a brief history of the development 
of least squares will now be given. 

The first published description of the use of least squares was by Legendre 
(1806), who used the method for the orbit determination of comets. Three 
years later Gauss (1809) wrote that "our principle (least squares with a 
diagonal weight matrix) which we have made use of since 1795 has lately been 
published by Legendre" and a bitter personal feud started. It is now generally 
accepted that Gauss was the first to use least squares. The first theoretical 
analysis of the method was by Laplace (1812), who essentially showed that least 
squares estimates were what we should call maximum likelihood estimates. 
Actually Laplace used the term"most probable1 and justified least squares so 
long as the observations were independent (diagonal W) and normally dist~ibuted. 
His proof basically involved maximising the probability (i.e. area under a 
normal pdf) of estimates lying within certain limits. 

A different approach was taken by Gauss (1821), who was the first to show the 
minimum variance property of the least squares solution (although his proof 
was restricted to independent observations). Gauss was therefore the f i rst to 
justify the use of least squares without recourse to the normal distribution. 
His work was largely ignored during the nineteenth century when Todhunter (1865), 
Merriman (1877) and others gave the impression that Laplace was wholly 
responsible for giving the method a statistical basis. 
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In the early part of the twentieth century Markov, e.g. in Markov (1912), 

wrote extensively on Gauss's ideas and drew attention to the impor±ance of 
his work. Although Markov added nothing new in this area we today refer to 

the minimum variance property (in 6.3) as the Gauss-Markov theorem. 
Aitken (1934), using matrix algebra notation, extended the Gauss-Markov 
theorem to the case where W is a full matrix (i.e. correlated observations). 

6.6 The practical argument 

We have seen that there is a theoretical justification for the application of 
the least squares process to virtually any set of measurements (the only 
assumptions implicit in the foregoing were that the pdf should be continuous 

and W should be positive-definite, both of which will always be true in 
practice). There are also a number of more practical reasons why surveyors 
use least squares and it must be said that it is for these reasons that most 
least squares computations are carried out, i.e. surveyors would probably use 
least squares even if it could not be justified from a statistical point of 
view. 

(i) The method is extremely easy to apply because it yields a linear set 
of normal equations (unlike, say, "least cubes"). 

(ii) It is unique, i . e. there is only one solution to a given problem. Some 

of the so-called semi-rigorous methods (e.g. semi-graphic resection) 
yield a large number of solutions depending on the subjective choice of 

the surveyor carrying out the computation. 

(iii) It is, generally speaking, "unobjectionable": it is very difficult ~ 

form an argument against least squares and in favour of some other 
procedure. 

(iv) The method leads to an easy quantitative assessment of quality, e.g. 
via the covariance matrix CA. X 

(v) It is a general method that can be applied to any problem. 

To counter these apparently overwhelming arguments, the following warnings 
should be given. 

(i) Least squares does not give the true solution. On average (because of 

the unbiased property) the least squares solution is the true solutio~ 
but for any individual problem there may be some other technique t hat 
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will give (perhaps by chance) an answer closer to the truth. Of course, 
we are very unlikely to know -this. 

(ii) If either Ct or the basic model (2.3) do not truly reflect the physical 
situation, none of the derived properties of the least squares estimate 
will be valid. There are often considerable practical problems with 
determining both of these. 

(iii) Although the normal distribution is not required for the application of 
least squares, it is essential for the application of most of the 
statistical tests described in section 5. 
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7. -Sequential and step-by-step methods 

There are many practical problems for which it is convenient to divide a least 
squares computation into parts. Two classes of such problems can be identified 
as follows: 

(i} situations in which not all of the observed data is available at any 
particular time and it is required to estimate all of the parameters 
with a view to updating these estimates as new data becomes available 

(ii) situations in which it is required to split the parameters into groups 
and to estimate either only a limited number of parameters or different 
groups of parameters at different times. 

Methods for the two classes of problem are referred to as "sequential" and 
"step-by-step" respectively. Note that we require that the results from both 
non-simultaneous approaches to be the same as would be obtained from a full 
simultaneous least squares computation (as described in section 3). The reason 
for dividing the problem is purely one of computational convenience (usually to 
reduce both the storage and execution time required for solution by a computer). 

In this section details of one method for each of the two classes of problems 
will be given. The approach adopted is to begin by quoting a number of 
examples of problems in which the situation occurs and then to give a full 
mathematical derivation, followed by the working formulae for the relevant 
method. In the case of sequential methods there really is only one method, 
called sequential least squares, and this will be given. There are, however, 
several alternative step-by-step methods and the one chosen for inclusion here 
is known as the Helmert-Wolf method. Derivations will be restricted to the 
special case of observation equations. Gagnon (lg76) describes other non-
simultaneous methods which fall into the classes identified above. • 

7.1 Sequential least squares 

7.1.1 Examples of applications 

(i) Real time data acguisi tion There are a number of problems in which dat( 

is acquired in real time and a continuous estimate of a number of stationary 
parameters is required. Note that if new parameters are being "generated" bY 

the new data we must use a step-by-step method and if the parameters are 
changing with time we need to use a filtering technique, e.g. Kalman 
filtering as discussed in section 8. An example of a problem sui table for t MS 
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sequential least squares approach is the fixing of a stationary oil rig by 

continuous interrogation of a number of different navigation systems. 

Coordinate updates A national mapping organization, or any other body 

concerned with the provision of coordinates, is, in general, continually 
undertaking new measurements. Rather than carrying out a completely new least 
squares computation involving all the original data, these organizations may 
prefer sequential least squares, which allows an update of the coordinates 
(and the estimates of their precision) by computing small "corrections" from 
the new data. 

iiii) Design of position-fixes The computer simulation method of designing 
position-fixes (described in 4.5.1) involves continuously altering a proposed 
position-fixing configuration to search for the one which fulfils the design 
criteria most economically. After each alteration a new covariance matrix CA 

X 

is required. The use of the sequential least squares method allows this to be 
determined by a correction to the previous c~ and without a completely new 

X 
computation and inversion. 

7 .1.2 Derivation of the method 

Suppose we have a vector of observations, t
1

, from which we wish to estimate 
some parameters, x. We set up the linearised model in the form 

= (7.1) 
,.. 

and determine the least squares estimate of x, which we will call x1 , from 
(3.41) by 

"'' ( T )-1 T 
xl = Al WlAl Al Wlbl (7.2) 

where wl cb 
-1 We find it convenient to write (7.2) as = 

1 
,, -1 
xl = Nl ul (7.3) 

where 

Nl 
T = Al WlAl (7.4) 

and 

T 
ul = Al Wlbl (7.5) 

- 109 -



P
au

l A
 C

ro
ss

- U
C

L

Also we have, from (4.67), 

(7.6) CA = 
xl 

Now suppose that we have some additional observations l 2 and we wish to obtain 
an estimate of x, which we will call ~2 , from ~ l 1 and l 2 • We proceed as 
follows. 

Let t he linearised model for the second set of observations be 

= (7 . 7) 

with a new weight matrix w2 = 

Then combining (7.1) and (7 .7) we obtain t he c ompl ete model 

Ax2 = b + V 

where 

A = [ :~] ' b = [ :~]. V = [ ~~J 
also we will have 

w = [:1 :J 
and for the correlatives 

k = [:: J 
Now, from (3. 15) , remembering t hat we are dealing with the special case of 
observation equations, we write the least squares solution to (7.8) as 

[-: 
- I 

:J [~J [:] 0 
AT 

(7 . 9) 

Then, partitioning (7.9) further we obtain 
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) 

0 I I ,-
1 

0 0 

0 W
2 

I 0 -I 0 

------- -'------ -,---
-I 0 I 0 0 1 A1 i I 

I I 

0 -I 1 0 0 : A2 
------ ---'-- --------

0 0 
1 

A T A T: 0 
1 2 I 

which can be rearranged to 

Now 

0 

0 

-I 0 

0 0 

0 -I 

-I 0 

0 0 

0 Al 

AT 0 
1 

0 

applying (3.21) to eliminate 

w2 0 0 -I 

-1 
0 -W Al 0 

1 

0 A T 
1 0 A T 

2 

-I 0 A2 0 

0 

-I 

0 

A T 
2 

0 

A in vl 

= 

(7 .ll) gives 

A 0 v2 

11 

kl bl 
= 

/\ 0 x2 

" k2 b2 

Similarly eliminating " v2 in (7.12) gives 

-1 " -W Al 0 kl bl 
1 

A T 0 A T 
,, 

0 x2 = 1 2 

-1 " 
0 A2 -W k2 b2 

2 

0 

0 

0 

0 

0 

b 
1 

0 

A and eliminating k
1 

in (7.13), and using (7.4) and (7.5), yields 

- lll-

(7 .10) 

(7.11) 

(7 .12) 

(7.13) 
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Nl A T 
2 " x2 ul 

= ( 7.14) 
-1 ,, 

A2 -W k2 b2 2 

We now apply (3.21) directly to (7.14) to give 

(7.15) 

Substituting (7.3) in (7 .15) and rearranging yields 

= (7.16) 

From (7.14) we can write 

(7.17) 

hence 

= (7.18) 

and substituting (7.3) and (7.16) in (7.18) gives 

= (7.19) 

which is the sequential least squares expression for the parameters. To 
determine the residuals for the additional observations we return to (7.10) 
from which we can write 

(7.20) 

giving 

(7.21) 

and substituting (7.16) in (7.21) gives 

(7.22) 

as follows 

(7.23) 
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) 

) 

) 

1) 

.) 

~) 

3) 

which can be written . 

~2 ~ [ Ql Q2] [:~] 
where 

and 

Now applying the propagation of error law, (4.16), to (7.24) gives 

Then substituting 

p = 

gives 
C" = 

x2 

which multiplies 

0 

0 

Q T 
1 

Q T 
2 

in (7.27) and multiplying out gives 

(7.25) and (7.26) in (7.28) with 

( -1 -1 T)-1 
W2 + A2Nl A2 

(I - N -lA TPA )N -l(I - A TPA N -l) 
1 2 2 1 2 2 1 

-1 T -1 -1 + N
1 

A2 PW2 PA2N1 

out to give 

N -l- N -lA TPA N -l - N -lA TPA N - 1 
1 1 2 2 1 1 2 2 1 

The last two terms of (7.31) combine to give 

But from (?. 29) we see that (7.32) is equal to 
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(7.33) 

Hence the sum of the last three terms of (7.31) is zero and we can write, 

using (7.6) and (7.29) 

- 1 T( -1 -1 T)-1 1 - 1 CA = C~'- Nl A2 W2 + A2Nl A2 A2 1 x2 xl 
(7.34) 

Note that, using (7.6), we can write 

-1 c" N2 = 
x2 (7.35) 

7 .1. 3 Summarl of the seguential grocedure 

We start with a set of measurements t
1 

and obtain our first least squares 
estimate of x (~1 ) and its covariance matrix (c~1 ) in the usual way using (7.3) 
and (7.6); also we can estimate the residuals (01 ) from (3.43) . If a new set 
of measurements t

2 
becomes available we can obtain a new estimate of x and its 

covariance matrix from both sets of measurements by using 

" " + 0~ x2 = xl (7.36) 

c ... = c ... + D.CA 
x2 xl X 

(7 .37) 

where ox and .t.c ... are given in (7.19) and (7.34) • 
X 

The residuals for the new 
observations are given by (7 . 22), or if required the residuals for the compleh 
set of observations t

1 
and t

2 
can be obtained from 

( 7. 38) 

Should a third set of measurements become available we can obtain ~3 eto. fr~ 

~2 etc . by using exactly the same set of formulae but putting the subscripts 3 
and 2 instead of 2 and 1 and so on for fourth, fifth ••• sets of measurements. 

The general form of the equations, written in a way that indicates how the 
computations would be carried out in practice, is 

-1 T ( 7. 39) R. = N. 1A. 
~ ~- ~ 

S. ( -1 )-1 ( 7. 40) = w. + A.R. 
~ ~ ~ ~ 

" A 
( 7 . 41 ) k. = S.(A.x. 1 - b.) 

~ ~ ~ ~- ~ 
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1\ " " X. = X. 1 - R.k. 
~ ~- ~ ~ 

(7.42) 

" -1" 
V. = w. k. 
~ ~ ~ 

(7 . 43) 

c .... N. -1 cl\ R.S.R. T = = X. ~ xi-1 ~ ~ ~ 
~ 

(7 . 44) 

Notice that each computational cycle includes only one inversion, to get S. in 
-1 ~ (7.40). No inversion is required to compute R. in (7.39) because N. 1 is 

~ ~-

given by (7 . 44) from the previous cycle. The s i ze of the matrix to be inverted 
in (7.40) is the number of new observations. Hence it can be seen that the 
method will be at its most efficient when only a few (compared with the number 

of parameters) measurements are added during each cycle. If the number of new 
measurements approaches the number of parameters it is more efficient to start 
afresh and carry out a new simultaneous least squares computation in the usual 

1.3) way. Mikhail (1976) and Forster (1980) include detailed discussions of the 

3et efficiency of the application of the sequential least squares method and several 
its numerical examples of its use. 

) 

') 

It should be noted that there may be situations in which it is required to 
remove rather than add observations, e.g. when designing position-fixes or 
after discovering a gross error amongst the latest observations to be added . 
In such cases the procedure and formulae are exactly the same except for a 
change of the signs in (7.40), (7.41) , (7 . 42) and (7.44). Finally, it is 
remarked that a similar procedure can be derived for the combined case of least 

Jlete squares. 

3) 

'rom 

;s 3 

) 

7.2 The Helmert-Wolf method 

It was explained at the beginning of this section that the Helmert-Wolf method 
can be used for problems where it is convenient to split the parameters into 
two or more groups. 7.2.1 gives three examples of such problems whilst 7. 2 . 2 
is concerned with the Helmert-Wolf method itself. Further reference to the 
examples is made in 7.2.2 and 7.2.3. 

7.2 .1 Example of applications 

(i) Calibration of acoustic networks Suppose that there are a number of 
acoustic beacons, A, B, C, ••• , etc. as in Fig. 7.1 placed on the seabed and 
that it is required to find their positions so that they may be used at a later 
date to position ships in the area. A ship may be sailed through the area, as 
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shown in Fi g. 7.1, and at points 1, 2, 3, ••• , etc. it may measure distances 
to whichever beacons are within range and the problem would be to compute the 

/ 

/"2 ... 
- I 

/ 
Jl' 

/ 3 

B 

c 

Fig. 7.1 

.... ....... 
..... 

....... 
....... .... ------.. 

0 

coordinates of points A, B, C, ••• , etc. The coordinates of points 1, 2, 3, ., ,
1 

etc. are unlikely to be needed (although as will be seen later they can be 
determined if required). 

Obviously one solution would be to write down one equation for each distance 
and solve the problem simultaneously as if it were a geodetic network. The 
difficulty with this is that there may be hundreds (or even thousands) of ship 
positions and the least squares computation would involve solving normal 
equations of very large dimensions, possibly larger than could be handled ! 

conveniently by the available computer. It would clearly be advantageous to ~ 
able to divide the parameters into two groups - ship positions and beacon 
positions - and to be able to limit the solution to the beacon positions only. 

Note that the problem as described here is often referred to as relative 
calibration, as one of the beacons would have to be assigned arbitrary coordi~ 

'( 

nates and the result would consist of relative beacon positions. Absolute 
calibration (i.e. determination of positions in a particular reference system) 
could be performed by the same method if at some of t he ship positions, 1, 2, 
3, .•• , etc. in Fig. 7.1, measurements were made to points (e.g. shore statiom 
or satellites) whose positions were known in the required reference system. 

(ii) Satellite-Ooppler positioning When fixing the position of a statio~ti 
point using the satellite-Doppler method it is common practice to observe a 
large number (say fifty) satellite passes. For each pass the observation 
equations will contain a number of unknowns - three for the position of the 
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point and a variable number for the pass (e.g. for orbit errors, refraction, 
frequency offset and frequency drift). The number in the latter group depends 
on the mathematical model used for the solution. For example, if we had ten 
pass unknowns (which would be different for every pass), then, for fifty passes, 
we would have a system of 50 x 10 + 3 = 503 equations to s olve if all the data 
were treated simultaneously. 

There are obvious advantages in dividing the parameters into two groups, pass 
unknowns and position unknowns, as we often do not need to know t he former. 

(iii) Computation of national and continental networks 

In modern geodesy it is fashionable to compute simultaneously very large 
triangulation networks, e.g. the European network has recently been completed, 
the North American is currently (1982) being computed and an African network 
is at the early planning stage. There are several reasons why such networks 
may not conveniently be handled in one simultaneous computation; some are 
listed below. 

(a) The set of equations may be too large to handle conventionally. 

(b) Various countries may be reluctant to make their observations generally 
available. 

(c) Relative weights between areas of triangulation may be difficult to assess. 

(d) There may be problems over the publication of coordinates, i.e. a 
country may not wish others to know coordinates of its stations. 

It will be seen that splitting the network into areas (countries or groups of 
countries in the case of continental networks) and introducing two kinds of 
position unknowns, those for points within the area and those for points on the 

'( 

boundaries (called internal and junction unknowns respectively), can overcome 
all of the above difficulties. A central bureau is established to compute the 
junction point coordinates and then each area can compute its own coordinates 

independently. 

7.2.2 Derivation of the method 

Suppose that we have r sets of independent observation equations and that in 

each set we divide the parameters into two groups which we call local and 
common parameters. The common parameters, y, will appear in every set whereas 
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the local parameters, x. for the ith set of observations, appear only in t hat 
~ 

one set. We could then partition the ith set of observation equations i n the 

form 

= (7.45) 

i.e. A.x. + B.y = b. + v. 
~ ~ ~ ~ ~ 

(7.46) 

To explain this further we return to the three examples in 7 . 2 .1. 

(i) Each set of observations is the group of distance measurements from one 
ship position. The local parameters are the position of the ship and 
the common parameters are the positions of the beacons. 

(ii) Each set of observations is a single satellite pass, the pass unknowns 

are the local parameters and the coordinates of the observer's position 
are the common parameters. 

(iii) Each set of observations is an area of triangulation, the interior point 
positions are the local parameters and the junction point positions are 
the common parameters. 

It is important to note the following two points. 

(i) The unknowns in each set of observations must be carefully arranged as 
in (7.45), i.e. the common parameters must appear after the local 

parameters in the complete vector of parameters. 

(ii) The vector y contains all the common parameters, even though any one 
set of measurements may only be concerned with a limited number of the• 
This point is made merely to ensure the rigour of the derivation to 
follow. In practice it is only necessary to form sets of observation 

T 

equations using the common parameters with which those observations are 
concerned. The missing parameters are merely filled with zeroes at the 

appropriate stage. This will become clear in 7.2. 3. 

Now if we let W. (= Cb -l) be the weight matrix for the i th set of observations 
~ i 

and combine together all r sets of measurements we will have a block diagonal 

global weight matrix (because the sets are independent of each other). 
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_j 

wl 
w2 

w : 

w r 

and a global vector of residuals 

V : [vl v2 vr]T 

making the least squares requirement 

• • • + 
T V W V r r r 

is a minimum 
T v Wv : 

r 

i.e. 
\ T , v

1
· W.v . = minimum 

'-' ~ ~ 

i:l 
Substituting (?.46) in (?.47) gives 

r 

\ (A.x. + B.y L ~ ~ ~ 

T b.) W.(A.x. + B.Y- b . ) 
~ ~ ~ ~ ~ ~ 

: 

i:l 
and expanding gives 

r 

I T T (x. A. W.A.x. 
~ ~ ~ ~ ~ 

T T + x. A. W.B.Y 
~ ~ ~ ~ 

i:l 

T T T T + y B. W.A.x. + y B. W.B. y 
~ ~ ~ ~ ~ ~ ~ 

T T x. A. W.b. 
~ ~ ~ ~ 

T T 
y B. W.b. 

~ ~ ~ 

minimum 

T 
T T b. W.B.Y + b . Wb.) = minimum 
~ ~ ~ ~ ~ 

(7 .47) 

( 7-.48) 

for a minimum the differentials of (1.48) cith respect to x. and y must be ~ A ,.. 

zero. Differentiating first cith respect to x., and again using x. and y ~ ~ 

b. W.A.X. 
~ ~ ~ ~ 

to denote the least squares estimates of x. and y gives ~ 

r 
\ ( T ~ T ~ 
1 

2A. w.A.x. + A. W.B.Y 
~ ~ ~ ~ ~ ~ ~ ~ 

T " +A. W.B.Y 
~ ~ J. 

T A. W.b.) 
~ ~ ~ 

= 

T A. W.b. 
~ ~ ~ 

0 
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whiGh simplifies to 
r 

I T /\ T A T ) (A. W.A.x. +A. W.B . y - A. W.b. 
~ ~ ~ ~ ~ 1 ~ ~ 1 ~ 

i=l 
= 0 

Similarly differentiating with respect to y and simpli f ying leads to 
r 
I T " T " T 

(B. W.A .x . + B. W. B.y- B. W.b . ) = 0 
1 ~ J_ ~ ~ ~ l. ~ 1 l. 

i=l / 
(7 . 49) and (7.50) can be combined to give 

T A.TW.B. A T A. W.A. X. A. W.b. r 1 l. 1 l. l. l. l. 1 l. l. 

I = 0 

i=l T T A T B. W.A. B. W. B. y B. W. b. 
l. 1 l. ~ l. l. l. l. l. 

Then app l ying (3.21) to (7.51) gives 

B. W.A . (A. W.A.) A. W.B . ) y T T -1 T } " 
1 ~ l. J_ 1 l. l. l. l. 

r 

= \ T T ( T )-1 T 
I (B. W.b. -B. W. A. A. W.A. A. W.b.) 
~ J_ l. l. 1 l. l. 1 l. J_ l. 1 l. 

i=l 

(7.49) 

(7.50) 

(7 . 51) 

(7 . 52) 

A Hence we have derived a set of equations which is in terms of y only . We can 

write (7 . 52) in the form 

or 

where 
Ny = d 

N. = 
l. 

T T T -1 T B. W.B. -B. W.A.(A. W.A.) A. W.B . 
J_ ~ l. l. l. ~ l. l. l. l. l. l. 

T T T -1 T B. W.b.- B. W.A .(A. W.A.) A. W.b. 
l. l. l. l. l. l. l. l. l. l. l. l. 

The set of equations 

A 

N.y = d. 
l. l. 

(7 .53) 

(7.54) 

(7.55) 

is sometimes referred to as the "reduced normal equations" for the ith 
observation set. This is because they are obtained simply by independentl Y 
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for~ing the normal equations for the ith observation set ((7.51) without the 
summation sign) an-d eliminating the local parameters, ~., according to the 

~ 

) procedure of (3.21). Hence the procedure is to compute the reduced normal 

equations for each set of measurements and then simply to add them together~ 
as in (7.53), to form a set of equations, (7.54), that can be solved for y, 
the common parameters. If the values of any of the local parameters are 

) required we return to the normal equations for the relevant set of observations 

and obtain x. using (3.20), i.e. 
~ 

" X. = 
~ 

( T )-1( T A. W.A. A. W. b. 
1 1 1 1 1 1 

T " A. W.B.y) 
1 1 1 

( 7. 56) 

Note that it is at the summation stage, (7.53), that we need to ensure that 
all matrices N. have the same dimensions. 

1 
If some of the common parameters do 

not appear in any particular set of measurements, the N. for that set will have 
~ 

to be filled with zeroes in the appropriate places. This is not problematical, 
although great care must be taken when carrying out, say, a continental 
adjustment to ensure that all countries adopt the same code numbers for the 
common parameters. 

To obtain the least squares estimates of the residuals we return to each of 
the i sets of measurements, solve for the local parameters using (7.56), and 
use (7.46) in the following form 

can A A.~. + B.y- b. ( 7. 57) 

j) 

) 

V. = 
1 1 1 1 ~ 

In some problems the local parameters and residuals may not be required but 
it may be desired to compute the variance factor from (4.25), which requires 

AT 1\ computation of the global quadratic form v Wv. It i s shown in Gagnon (1976,45) 
that this can be determined without explicitly computing the residuals by 

using 
r 

"Tw"-v V = "T I T T T -1 T y d + (b. W.b . -b . W.A . (A. W.A.) A. W. b.) 
1 1 1 1 1 1 ~ 1 1 ~ ~ 1 

i=l 

where d is given in (7.54). 

(7.58) 

The covariance matrix of the common parameters, CA, is obtained in the usual y 
way 

CA 
y = -1 N (7 .59) 

where N is defined in (7.54). To determine the covariance matrix of the local 
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pa·rameters of a particular set of observations we return to the normal 
equations for that set ((7.51) without the summation sign) and write them in 

the form 

(7.60) 

where 
T N = A. W. A. 

X ~ ~ ~ 

T N = A. W.B. xy ~ ~ ~ 

T N = B. W.B. y ~ ~ ~ 

T 
pl = A. W. b. 

~ ~ ~ 

T 
p2 = B. W.b. 

~ ~ ~ 

'· ;,. X = X. 
~ 

The suffix i will be dropped f r om now on to increase clarity . 

Now applying (3.20) to (7.60) gives 

" X = 

which expands to 

" X = - 1 - 1 " N p - N N y 
X 1 X XY 

and substituting for p1 gives 

N - lATWb- N - lN ;,. 
X X xyy 

1\ 

X = (7.61) 

then, applying (4. 16) to (7.61) and assuming b and y to be independent 
(which is not true but is a reasonable simplification) 

but W = cb- l and Nx = 

c~ = N - l + N -lN c~N TN - l 
X X X xy y xy X 

(?.62) 
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'. 60) 

7. 61) 

.62) 

which is the expression for the covariance matrix of a set of local parameters. 
Writing it in full for the ith set of local parameters we have the approximate 

formula 

T -le T T ( T )-1] c~ = (A. W.A.) I+ A. W.B .C~B . W.A. A. W.A. X ~ ~ ~ ~ ~ ~ y ~ ~ ~ ~ ~ ~ 
(?.63) 

7.2.3 Summary of the Helmert-Wolf procedure 

The Helmert-Wolf method can be summarised in the following steps. 

(i) for each set of observations (measurements at one ship position, one 
satellite pass and one area of triangulation in the three examples in 
7.2.1) the normal equations are independently formed, taking care to 
put the common parameters (beacon, receiver and junction point positions 
in the three examples) below the local parameters (ship position, pass 
unknowns and interior point coordinates) in the vector of parameters. 

(ii) Each set of normal equations is independently reduced using the 
strategy of (3.21) to form reduced normal equations in terms of the 
common parameters only. 

(iii) These reduced normal equations are simply added together and solved to 
give the least squares estimates of the common parameters. 

(iv) If the least squares estimates of the l ocal parameters are required it 
is necessary to return to the independent sets of normal equations 
(stage (i)) and use (3.20). If the residuals are required they can 

(v) 

be obtained from (7.57) but if an estimate of only the unit variance 
is required (7.58) can be used. 

The covariance matrix of the common parameters is obtained from (7 . 59) 
and, if required, the approximate covariance matrices of the local 
parameters are obtained from (7.63). 

The following points are worth noting. 

(i) The procedure is exactly equivalent to a simultaneous least squares 
solution (7.2.2 proves this). 

(ii ) It has special advantages when the local parameters are not ~squired, 
e.g. in the first example of 7.2.1 where a very small minicomputer 
could easily cope with what is equivalent to the simultaneous 
solution of many hundred simultaneous equations. 
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(iii) It has special advantages, in terms of the organization of the work, . 
for the computation of continental networks; see Gagnon (1976). 

(iv) If required the process can be split into a number of levels, i.e. 
the common parameters could themselves be divided. This is rather 
complex and only really applicable to exceptionally large problems. 
Isner (1978) and Dillinger (1978) describe the application of this 
strategy to the computation of the North American horizontal network. 

7.3 A note on linearisation 

It is important to point out that both sequential and step-by-step methods are 
usually only worthwhile when there are no significant linearisation errors, 

0 i.e. when the approximate values for the parameters, x ,are very close to the 
final estimates. Obviously many of the advantages of t he method would be lost 
if it were necessary to iterate. 

7.4 Terminology 

It should be realised that other authors use the phrase "step-by-step" to 
refer to different problems. Vani6ek and Krakiwsky (1986) call Kalman 
Filtering and Sequential Least Squares "step-by-step" methods while for 
Gagnon (1976) anything that is not a simultaneous solution is a 11 step-by-step11 

solution. 
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s. Filterina, smoothing and prediction -
filtering, smoothing and prediction techniques are used for problems in which 
the parameters being estimated by the least squares process vary with time. 
one obvious example is navigation (at sea, on land or i n space), where we try· 
to estimate the position of a vehicle as it moves. The methods are, however, 
valid for any system in which the parameters have temporal variations even 

though there may be no movement . For instance, a stationary inertial 
surveying system has time varying system errors (gyro drift especially) which 

often appear as parameters in a least squares computation. Before any 
mathematical details are given the basic terminology will be explained by means 
of an example of navigation at sea . 

Suppose we have a vessel moving so that at times t 1 , t 2 , •. • , ti it is at 
positions 1, 2, • • • , i as in Fig. 8 . 1. 

' 

Fig.B.l 

Let us say that t. is the present and t. is the time at which we want to 
~ J 

estimate the position of the ship using all the information available up to t. 
~ 

~ 

(the present). We can make the following definitions: 

if t. = t . we are filtering 
~ J 

t. > t. we are smoothing 
~ J 

t. < t. we are predicting . 
~ J 

To make these definitions clearer, imagine a ship at sea carrying out a 
seismic survey . It would be common to travel in straight lines, taking 
seismic measurements at specified linear intervals, whilst continuously 
interrogating some kind of shore-based navigation system . The process of 
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computing the ship's position at any instant in order to plot the real-time 
position on a chart would be filtering. The computation of the time at which 

the ship is expected to be at the correct position to make a seismic 
measurement would be prediction and the subsequent, possibly office-based, 
estimation of where the ship actually was when the measurements were taken 
would be smoothing. 

There is a number of different mathematical strategies for filtering, 

smoothing and prediction. In this section a widely used method, called Kalman 
filtering, will be derived and discussed. It is important to note that despite 
its nam~ the set of equations known as the Kalman filter can be used for all 

three activities, i.e. filtering, smoothing and prediction. Before the Kalman 
filter -is introduced more definitions are required . 

Returning to Fig. 8.1, suppose that x1 , x2 , ••• , xi are the true val ues of the 
parameters at paints 1, 2, ••• , i and that t 1 , t 2 , ••• , ti are the correspon~~ 
vectors of measured quanti ties. For each point a functio nal model can be 

written as fol l ows 

Fl(xl, ] ) 1 = 0 at point 1 

FzCxz, ]2) = 0 at point 2 (8.1) 

etc . 

which may be linearised (as in 2 . 2) to 

Alxl + Clvl bl = 0 

A2x2 + C2v2 - b2 = 0 (8 . 2) 

etc. 

Note that F1 , F2 , F3, etc. may be entirely different, for inst~nce point 1 
may represent a satellite- Doppler fix, point 2 may be a shore-base navigati~ 

;t iS system fix, point 3 may be an acoustic fix, etc. In practice, however, ~ 

more likely that most points will be fixed by the same s ystem with only 
occasional measurements made with other systems. Also note t hat in this 

example x may contain a number of parameters besides positions: typically, 
velocity and heading may be included as well as scale and refraction unkno~~ 

Some unknowns, e.g. scale and refraction, may best be considered as constant 
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over short periods of time, i.e. not all of the parameters have to be time 

varying. 

(8.1) and (8.2) are usually referred to as primary models; they relate the 

Parameters to the measurements and have associated covariance matrices which a ken 
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knowns. 
stant 

are used to determine the weight matrices w1 , w2, ••. , Wi in the usual way. 

We further suppose that we have some kind of mathematical model which relates 
the parameters at point 2 to the parameters at point 1, i .e. we have some 
additional source of information as to how x varies with time . Such a model 
is known as the secondary model and can be written as 

or, more generally, 

F. 1 .(x. 1 ,x.,t. 1 ,t.) = o 
~- ,~ ~- 1 ~- ~ 

The secondary model (8.3) can be linearised to 

= 

(8.3) 

(8 . 4) 

(8.5) 

where y represents the unknown errors in the secondary model, i.e. the 
inability of (8.3) to predict correctly the temporal changes in the parameters. 
Associated with (8.5) is a covariance matrix C which reflects the precision y 
of the secondary model. The inverse of C is the weight matrix of the y 
secondary model 

= -1 c y (8 . 6) 

For most practical problems, and indeed in the classical approach to 
filtering theory, it is convenient to consider the vector y as being given by 

y = Tg (8.7) 

where g is the vector of the quantities which cause the secondary model to be 
incorrect and T is a coefficient matrix chosen so that the product Tg 

represents the effect of these quantities on the parameters . Notice that, 

in general this transformation matrix T will not be a square matrix as the 
number of error sources in the secondary model is not necessarily equal to 
the number of parameters. Usually g will be assumed to be a vecGor of random 
quantities with a zero mean and covariance matrix C • Then, by use of (4.16) , g 
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............ __________________ __ 

the weight matrix of the secondary model becomes 

= (8.8) 

In practice the secondary model will be determined from the known historical, 
or theoretically expected, changes in the parameters and the vector g will be 
some physical effect which is known to exist but is not modelled. For 
instance when navigating at sea the secondary model may describe straight line 
motion (constant velocity) and all its errors would be due to vehicle 

accelerations; hence g would contain these unknown accelerations (whi ch could 
reasonably be described in practice as being random). 

In the jargon of filtering techniques the vector of parameters x is called the 
state vector and the matrix M is known as the transition matrix. Vector g is 
known as the driving noise or more generally as the forcing function. Notice 
that M, T and WM will all usually be functions of time. 

8.1 The Kalman filter eguations 

The filter which we now call the Kalman filter was first derived in Kalman 
(1960) as a method for use in electrical control systems. I t is now a 
standard method within the general mathematical subject area known as 
sequential smoothing and prediction, and most books on this topic, e.g. 
Morrison (1969), devote considerable space to the technique. Surveyors 
generally find it difficult to read publications such as these as the 
notation is very different to that to which they are accustomed. Also, the 
starting point for the "classical" derivations is us ually the maximum 
likelihood requirement (see 6.4) which may be less familiar than least squa~L 

Krakiwsky (1975) has, however, shown that the Kalmanfilter can be derived fr~ 
the standard least squares requirement and it is this derivation that wi11 be 
given here. Note that in the case of observations with a normal pdf the 
least squares estimate is the same as the maximum likelihood estimate. 
Krakiwsky (1975) gives the derivation for the combined case of least squares 
but here onl y the special case of observation equations will be considered. 

This is simply to restrict the length (and apparent complexity) of the 
formulae - the procedure is identical for both cases. Readers who require 

the formulae for the combined case are advised to consult Krakiwsky (1975). 

Consider the two times t 1 and t 2 . At t 1 we have t he primary model 
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from 
1 be 

~es 

I. 

(8.9) 

and at time t 2 another primary model 

(8.10) 

Also we have the secondary model 

(8 . 11) 

The filtering, smoothing and prediction problems are to find least squares 
estimates for x2 , x1 and x3 respectively. Hence we wish to minimise 

subject to constraints (8.9), (8.10) and (8.11). Following Lagrange •s method 
of undetermined multipliers described by (3.11) we write down the function 

i = 

(8.12) 

To minimise ~ we differentiate with respect to all five variables 

(i) bi/b~l 
1\ T ,, T 

= 2vl wl - 2kl = 0 

" 
(\ .. Wlvl - k = 0 1 (8.13) 

(ii) . M/oC2 
"' T "T = 2v2 w2 - 2k2 = 0 

1\ 1\ .. W2v2 - k2 = 0 (8.14) 

(iii) ~~/bY = 2"Tw - 2k T y M 3 = 0 

" 1\ WMY - k3 = 0 (8 . 15) 

AT A T 
(iv) ~~/~xl = 2k1 A1 - 2k

3 
M = 0 

. Tr-. MTk 0 . , Al kl - 3 = (8 .16) 

(V) b~/bQ-2 
"T A T 

0 = 2k
2 

A2 + 2k
3 = 

T-" A 

A2 k2 + k3 = 0 (8.17) 
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We now combine equations (8.12) to (8 .17) with (8 . 9 ) to (8 .11) to form t he 
normal equations, which we write in the partitioned matrix form 

A 

wl 0 0 - I 0 0 0 0 vl 0 ,, 
0 w2 0 0 -I 0 0 0 v2 0 

WM 0 0 -I 0 0 A 0 0 0 y 
/I 

-I 0 0 0 0 0 Al 0 kl bl (8 . 18) = ,, 
0 - I 0 0 0 0 0 A2 k2 b2 
0 0 -I 0 0 0 -M I (< 0 

A T -MT 
3 ,, 

0 0 0 0 0 0 xl 0 1 
A T 0 0 0 0 I 0 0 

/\ 
0 2 x2 

I n theory (8.18) could be solved as a set of simultaneous equations to give 
A / \ sol utions for x1 and x2• Such a pr ocedure would of course be quite impracticru 

owing to the size of the l eft- hand-side matrix so we search for explici t 
• A I '- First introduce A I express1ons for x1 and x2 • we xl as A the estimate of x1 using 

onl y t he i nformation availabl e up to time t 1, 

i.e . /1.1 ( T A )-1 T -1 
xl = Al Wl 1 Al Wl bl = Nl ul (8.19) 

with covariance matrix 

T )- 1 - 1 c,.., = (Al WlAl = Nl xl 
(8 . 20 ) 

where 

Nl 
T = Al WlAl (8 . 21) 

and 
T 

ul = Al Wlbl (8.22 ) 

" A A (8 .18) ~ . Now we el iminate vl ' v2 and y from by successively using (3 . 21) to g1ve 

- 1 !\ 

- W 0 0 Al 0 kl bl 1 
-1 " 0 - W2 0 0 A2 k2 b2 

- 1 1'\ (8 . 23) 0 0 - WM - M I k3 = 0 

A T 0 - MT 0 0 !\ 
0 1 xl 

0 A T 
2 I 0 0 

1\ 

x2 0 

(8.23) 
;.. 1\ is rearranged to prepare for the elimination of kl and xl 
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( 

3 
-1 

A 

- Ill A1 0 0 0 k1 bl 

1 

A T - MT 0 0 " 0 

1 
0 

xl 

- 1 
1\ 

0 - M -Ill M I 0 k3 = 0 

0 0 I 0 A T 1\ 0 
2 x2 
-1 1\ 

0 0 0 A2 - 1112 k2 b2 

(8.24) 

3) 

Applying (3. 21) (8 . 24) 
1\ 

to to el iminate kl gives 

ve 

::tical 

Nl -MT 0 0 
,, 
xl ul 

- 1 
,, 

- M - Ill I 0 k3 
0 

M 
A T 

= 
0 I 0 " 0 

2 x2 

- 1 1\ 

0 0 A2 - Ill k2 b2 
2 

(8 . 25) 

sing 

:J) 

Applying (3.21) to (8.25) to eliminate ~ gives 
1 

- (MNl-lMT + WM-1) 
A 

- 1 
I 0 k3 

- MN1 u1 

I 0 A T " 0 

2 x2 = 
(8 . 26) 

0 A2 
- 1 1\ 

-W2 k2 b2 

J) We now i ntroduce X'
2

, the "predicted" state vector computed using the secondary 

l) 

,.., 1\1 • model, and x
1

• x2 ~s defined by 
(8.27) 

"'' 
N 

x2 = Mx1 

2) 
and substituting in (8.19) gives 

(8.28) 
give -1 /V 

x2 = MN 1 u1 

3) 

Also applying (4 . 16) to (8.27) whilst remembering that impl icit in (8 . 27) is 

a vector y with covariance matrix C (cf. (8.5)) we obtain y 

CA/ = M~ M T + c 
x2 1 Y 

and substituting (8.6) and (8.20) in (8.29) gives 

(8 . 29) 

(8.30) 
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lj 

li 
I 

Now we introduce 

I -l -1 T -1 
N2 = Cx~ = MN 1 M + WM 

Substituting (8.31) and (8.28) into (8.26) gives 
r 

1-l 
/\ N 

- N I a k3 - x 
2 2 

I 0 A T A 0 
2 x2 = 
-1 1\. 

a A2 -W k2 b2 2 

Applying (3.21) to (8.32) to eliminate 
/'>. 
k3 gives 

[N; _A2:J ~2 J [~::2] = 
A2 w2 k2 

Finally, applying (3.21) to (8.33) gives 

( 
-1 I -1 T A 1 A - W

2 
- A2N2 A2 )k2 = b2 - A2N~- N~x~ 

i.e. k2 = -(W2-l + A2N~-1A2T)-l(b2 - A2~~) 

Applying (3.20) to (8.33) gives 

i.e. 

Substituting (8.34) into (8.35) gives 

which is usually written as 

where G, given by 

G = N1 -lA T(W -l A N'-lA T)-l 
2 2 2 + 22 2 

(8.31) 

(8.32) 

(8.33) 

(8.34) 

(8.35) 

(8. 36) 

(8.37) 

(B. 38) 

is called the gain matrix. 
The covariance matrix of x

2 
is derived as follows. (8.37) is rearranged as 

(8. 39) 

- 132-



P
au

l A
 C

ro
ss

- U
C

L

i) 

5) 

6) 

7) 

) 

s 

then applying (4 . 16) to (8.39), whilst noting that ~; and b2 are independent, 

gives 

Cl\ = (I - GA2)~2 (I - GA2 )T + GC GT 
x2 b2 

- 1 and substituting (8 . 31) in (8 . 40) gives putting w2 = c 
b2 

CA = (I - GA )N'-1 (I - A TGT} + GW - lGT 
x2 2 2 2 2 . 

which expands and rearr anges to 

= 

(8 . 40) 

(8.41) 

GW - l)GT 
2 

(8.42) 

) The second bracketed term can be shown to be zero as follows . From ( 8 . 38) 

hence 

Substituting (8.44) in (8.42) gives 

(I - GA )N' - l 
2 2 

(8 . 43) 

(8 . 44) 

(8 . 45) 

A For smoothing we need to compute x1 , the l east squares estimate of x1 using 
al l data collected up to and including point 2 . To do this we proceed as 

fol lows . 

From (8.32) we write 

/\ TA 
k3 + A2 k2 = 0 

giving .. 
1\. T" 
k3 = -A2 k2 (8.46) 

and from (8 . 25) we write 

" - MTk Nlxl = ul 3 

giving 

" - 1 -1 TA (8.47) xl = Nl ul + N1 M k3 

Substituting (8.19) and (8 . 47) gives 
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= (8.48) 

1\ 
where k2 is obtained from (8.34). 

8.2 Summary of formulae and procedure 

A summary of the working formulae and procedure will now be given. To 
emphasise the recursive nature of the Kalman filter the suffices 1 and 2 will 
be changed to i-1 and i respectively and the possible temporal variation of 
the transition matrix will be highlighted by using the notation 

Similarly, WM will also vary with time and it is now de noted by 
procedure is: 

(i) set i = 1 

M. 1 . for M. 
J.- ,J. 

WM • The 
i-l,i 

(ii) compute the starting estimate of the state vector from (8.19) 

= -1 N. u. 
J. J. 

(iii) increment i 

i = i + 1 

(iv) predict the state vector from (8.27) 

N /1.1 
X. = M. 1 .X . 1 J. J.- 'J. J.-

(v) predict the covariance matrix from (8.31) 

C~>t = X. 
• .1 -1 -1 T -1 
N1.. =M. 1 .N. l M. l . + WM J.- ,J. J.- J.- ,J. 

J. 

(vi) compute the gain matrix from (8.38) 

G = N'.-lA_T(W .-1 + A.N'.-1A_T)-l 
J. J. J. J. J. J. 

(vii) compute the state vector from (8.37) 
1\ 
X. 

J. = ~- + G(b. - A.~'-) 
J. J. J. J. 

i-l,i 

(viii) compute the covariance matrix of the state vector from (8.45) 

1/-x. 
J. 

= (I - GA. )r.f. - 1 
J. J. 

-1 = N. 
J. 

(ix) prepare for the next iteration 
ly /\ 
X. = X. 

J. J. 

(x) return to step (iii). 
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~a) The_above steps are for filtering . For smoothing we use (8.48) 

Will 

of 

>r M. 

The 

19) 

50) 

il) 

52) 

53) 

i4) 

i5) 

6) 

" X. 1 
~-

= 

where, from (8.34), 

A 

k. 
~ 

= 

1\, - 1 T T"' x. l - N. l M. l .A. k. 
~- ~- ~- ,~ ~ ~ 

( -1 - 1 T)- 1( "' ) - W. + A. N. A. b. - A.x. 
~ ~ ~ ~ ~ ~ ~ 

(8 . 57) 

(8 . 58) 

Note that smoothing is carried out after the measurements have been completed. 

If there 
until we 

are n state vectors (max i = n) we would obtain ~ 1 , n-
" reached x

1
. 

1\ 

then x 2 , etc., n-

Prediction is carried out at any stage s i mply by using the secondary model 
whilst assuming no model errors, i.e. from (8.27) 

~~ A J 
x'+l = M .. 1x. ... ~,~+ ~ 

with covariance matrix, from (8 . 31), 

So 
be 

CAt = 
xi+l 

far nothing has 
simply obtained 

A 
V. = 
~ 

T 
M .. 

1 
CA M .. l + 

~,~+ X. ~,~+ 
~ 

been said of the 
from (8 . 10) 

I\ 

A.x. - b. 
~ ~ ~ 

(8.59) 

-1 w 
M .. 1 
~,~+ 

(8.60) 

computation of the residuals. These can 

(8 . 61 ) 

and can be tested in the usual way (see 5.4.1) for possibl e rejection . Al so, 
the model errors can be examined by using (8.11) 

A 

y. 1 . 
~- , ~ 

= /, " 
X. - M. l . X. l 
~ ~- ,~ ~-

8 . 3 Numerical aspects 

(8.62) 

A quick glance at the formu l ae in 8 . 2 may give the impression that the Kal man 
filter involves a great deal of computational work . In particular, the reader 
will notice a large number of matrix inversion symbols. It is impor tant to 
real ise that for any one cycle of the fil ter the only inversion occurs in the 
computation of the gain matrix when it is necessary to invert 

-1 I -1 T W. + A. N. A. 
~ ~ ~ ~ 

This matrix will have a size equal to the number of observations in the new 

primary model, i.e . the number of measurements made at the ith ship position 
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in the example shown in fig. 8.1. 
. -1 -1 The matrices W. and WM are not obtained by inversi ons: 

~ i-l,i 
they are onl y 

symbols for the covariance matrices 
Also, the matrix N.-l is found from 

~ 

of the primary and s econdary models. 
,-1 N. without carryi ng out a new inversion . 

. ~. 

Hence the efficiency of the Kalman filter is largely related t o the number of 
measurements added at each new time epoch - the s maller this number the more 
efficient the Kalman filter. It is worth mentioning here t hat there i s a 
mathematically equivalent (i.e. giving identical answers) method called Bayes 
filtering. This involves the inversion (during each cycle) of a matrix whose 
size is equal to the number of parameters in the s t ate vector. Hence if the 
number of observations at each epoch is larger than t he number of parameters 
in the state vector the Bayes filter is more efficient t han the Kalman filter, 
and vice versa. formulae for the Bayes filter can be found in Krakiwsky (1975~ 

8.4 Examples of applications 

8.4.1 Navigation 

Suppose we have a ship travelling in a steady fashion through an area of 
acoustic beacons as indicated in Fig. 8.2. At points 1, 2, ••• , i the ship 
fixes its position by means of distance measurements t o a number of beacons 
and carries out i independent least squares computat ions. 

2 

Fig. 8. 2 
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If the results of these computations are plotted and joined up we obtain the 
solid line in Fig. 8.2. Clearly this line does not represent the true path 
of the ship: it is uneven simply because of the errors in the position- fixes. 
A line rather like the dotted line in Fig. 8.2 is the true path of the ship 
and we need a method which can somehow combine all the individual position-
fixes to estimate this in real-time. 

The Kalman filter is the ideal method for this because it can cater fo r both 
the position-fix measurements (primary model) and a secondary model which in 
some way assumes that the final path is smooth. As a somewhat over- simplified 
example the filter could be applied to the foregoing problem as follows. 

Let a position- fix be carried out every At seconds with the results of the ith 

position fix being E. 0 and N. 0 with covariance matrix W.-1 • Note that the 
~ l l 

j), superscript 0 is used to denote an observed value; strictly speaking, the 
observations are the distance measurements from i to points C, D, E etc . but 
for this simple exampl e we are assuming that these have been processed to 
produce "observed" positions with an associated covariance matrix computed in 
the usual way. The state vector for this problem will contain four elements: 
two for the ship's position and one each for the east and north components of 

the ship 1 s velocity, i.e. 

X. = [ Ei N. V E. vN.J l l 
l l 

(8.63) 

The primary model 

Ax . = b. + V. 
l l l 

(8.64) 

will be [::1 + [::]_ [: 
0 0 :] E 

= 
1 0 N 

l 

(8.65) 
T 

VE 

VN 
i 

If we assume the ship to have a constant velocity then the transition matrix 
M. 1 . will be given by 
l- ,l 
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M. 1 . 
~- ,~ 

= 

1 

0 

0 

0 

0 

1 

0 

0 

Llt 0 

0 Llt 
(8.66) 

1 0 

0 1 

In this situation the driving noise (the quantity that will cause the 

secondary model to be in error) will contain the two components, aE and aN' 
of the ship's acceleration and its effect on the state vector y is given by 

y = Tg (8.7) 

- [ -Llt2/2 0 aE (8.67) y = 

At
2
/2 aN J 0 

Llt 0 

0 Llt 

Notice that when (8 . 66) and (8.67) are combined as in (8.5) they represent 
simple appli cations of the classical equations relating distance, velocity a~ 
acceleration, viz. 

X. = Mx. 1 + Tg ( 8. 68) 
~ ~-

E 1 0 Llt 0 E Llt2/2 0 

~:L.69) N 0 1 0 Llt N 0 Llt2 /2 
= + 

VE 0 0 1 0 VE Llt 0 

VN 0 0 0 1 VN 0 Llt 
i i-1 

which multiply out to 

E. = E. 1 + V Llt + taELlt2 
~ ~- E. 1 

~-

2 N. = N. 1 + V Llt + taNLlt 
~ ~- N. 1 

~- ( 8. 70) 

vE. = VE + aELlt 
l. i - 1 

vN. = VN + aNt:.t 
l. i - 1 
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56) 

., ) 
) ' 

rt 

·Y and 

·B) 

9) 

1) 

The ship's accelerations (driving force in this example) would usually be 
considered random (note that if this were not s~ very large and practically 
impossible velocities would occur). In practice these accelerations are not 
known (nor are they needed for the Kalman filter) but an estimate of their 
covariance matrix C is essential. It would be usual to consider the 

. g 
accelerations independent and their standard deviations (this term is preferred 
here to the synonymous standard error because the motion of the ship is not 
itself an error) equal. The size ofthese. standard deviations would be a 
function of a number of physical quantities such as the ship's power, the 
weather, the state of the sea and the type of motion (e.g . straight line or 
turning). To compute WM from Cg we use (8.8). For instance if we denote the 
standard deviation of the ship's accelerations by cr we have 

At2/2 0 
-1 

WM = 
At2/2 0 0 

At :J (8.71) 

At 0 

0 At 

Hence in (8.65), (8.66) and (8.7~) together with the covariance matrix of the 
primary model W. we have all the matrices needed to use the Kalman Filter 

l 

equations listed in 8.2. 

It should be emphasised that the foregoing is not suggested as a practical 
procedure for applying the Kalman filter to the described navigation problem. 
It is merely set out as a simple example of how to assign values to the 
various matrices used by the filter. In practice the problem is likely to be 
more complex with a need to combine data from a variety of sources, such as 
velocity and heading sensors, and to solve for a variety of parameters,.such 
as bias errors in the measuring systems. 

Finally, it is remarked that the performance of the filter is highly dependent 
on the weight matrices Wi and WM. If we assign large weights to the secondary 
model (i.e. WM is large compared with Wi) we will obtain a very smooth real-
time path for the ship but it will be slow to react to sharp changes in 
direction (e.g. when a ship turns through 180° when running seismic lines). 
Conversely, if Wi is large compared with WM we may obtain an uneven path, but 
it will react quickly to sharp changes. These problems need to be sol ved by 
experience. 
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8.4.2 Inertial surveying 

Inertial surveying systems make regul ar measurements of velocity, typically 
about fifty per second, in three orthogonal directions (usually north, east 

and "down"). For some applications it is required to have a real -time 
estimate of the position of a system as it moves over the earth's surface. 
In such cases we would have a state vector consisting of a number of time 
varying quantities such as position, velocity , heading errors, gyro drift 
rates and accelerometer drift rates. The quantities to be included in the 
state vector should be a function of the particular inertial system, the 
required accuracy and the capabilities of the on-board computer. As an 
exampl e, Gr eger son (1975) states that the Litton system used by the Geodetic 
Survey . of Canada includes seventeen elements in its state vector. 

It is not possible, without going into details of the theory of inertial 
surveying, to give a fu ll account of haw the Kalman filter is applied. An 
indication of its appl ication, however, can be seen by looking at a simplified 
system. 

Adams (1979) describes a two-dimensional system with a seven parameter state 
vect or 

(8.72) 

where a , ~ and y are the orientation ·errors of the three axes, ctp and dA are 
the errors in the positions derived by velocity integration and ctP and di are 
the north and east velocity errors . The filter will be used to evaluate t he 
state vector at every velocity update wit h the design matrix for the primary 
model being given by 

[: 0 0 0 0 1 :] A = (8~ 73) 
0 0 0 0 0 

because the measured quantities at each update are the velocity errors. The 
primary model weight matr ix, W, will be a function of the precision of the 
velocity measurements and will not vary with time 

wi-1 = w-
1 = [:~

2 

:~21 (8.74) 
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.c 

The transition matrix describes how the elements of x vary with time. This 
is rather complicated in · inertial surveying owing to the cyclic nature of the 

error propagation (see, for example, Cross and Webb (1980)). Hence the 
matrix M will not be quoted here; suffice it to say that it is a square matrix 
of size seven whose elements are mainly harmonic functions with periods 
related to the Schuler period (84.4 minutes) and the rate of rotation of the 
earth. The matrix and its associated covariance matrix WM-l is given in full 

in Adams (1979). 

8.5 Concluding remarks 

The Kalman filter is a fully rigorous least squares method for the filtering, 
smoothing and prediction of time varying quantities. As such it can be 

described as an optimal filter. Actually the term optimal filter strictly 
applies to filters which lead to maximum likelihood solutions, but it has been 

'ied shown in 6.4 that for a normally distributed pdf the least squares estimate is 

;e 

:e 

1re 
le 

:y 

le 

identical to the maximum likelihood estimate. 

Of course the advantage of a filter over a normal least squares computation is 
in the organization of the data so that it can be handled by the types of 

mini- and microcomputer commonly dedicated to position-fixing systems. To 
carry out an ordinary least squares computation using all the available data 
up to any particular time would involve massive sets of equations to solve 
and matrices to invert. It must, however, be emphasised that if such a 
solution were to be made the solution for the latest data point would be 
identical to the Kalman filter solution (the solution for the previous points 
would be the same as the smoothed solution). 

Finally, it is remarked that, as pointed out by Krakiwsky (1975), the 
sequential least squares method of 7.1 is actually a special case of the 
Kalman filter, i.e. sequential least squares is the Kalman filter applied to 
parameters that do not change with time. The equivalence of the formulae can 
be seen by dropping the subscripts from the state vector and putting 
M= WM-l = 0. Then, for example, equations (7.19) and (8.36) become identical. 
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9. · Least squares collocation 

The strict mathematical definition of collocation is given by Moritz (1980) 
as "the determination of a function by fitting an analytical approximation to 
a given number of linear functionals". The technique is mainly used in 
surveying and geodesy to determine the values of quantities at points other 
than those at which measurements have been made (or at which information is 
known). In its simplest form least squares collocation is exactly equivalent 
to a technique known as least squares prediction (or, more commonly, as least 
squares interpolation). 

The application of least squares collocation to position-fixing is not as 
directly obvious as the applications of the other least squares methods 
described in this Working Paper. It do~s, however, have some important 
"indirect" uses, for instance in the prediction of spatially varying 
quantities such as gravity, height, deviation of the vertical and geoid~ 
ellipsoid separation (all of which are needed in classical geodesy to reduce 
measured quantities to a reference surface ready for geometric computations). 
Also it is a very powerful tool for coordinate transformations, especially in 

cases where measurement errors have resulted in variable transformation 
parameters. The major geodetic uses of collocation are, however, in the gener~ 
field of physical geodesy where it can be used for many aspects (some of which 
have already been mentioned) of the computation of the anomalous gravity field, 
The technique is included here for the foregoing "indirect" applications and 
because it belongs to the general family of least squares methods to which th~ 
Working Paper is devoted. 

An essential feature of the method is that quantities which are by nature 
deterministic are described in a statistical manner, particularly by the use 
of covariance matrices. This is in contrast to the techniques in the re~t of 
this Working Paper, which use statistics only for measured quantities (or for 
functions of them). for instance if we were to use least squares collocation 
to predict the unknown height of a point surrounded by a number of points of 
known height we would need to establish a function (known as a covariance 
function) from which it would be possible to compute the covariance of the 
heights at any two points. This function would be in terms of quantities such 
as position and distance between the points. Hence all the elements of a hei~ 
covariance matrix could be computed. This matrix would then describe the 
variation of height in the area in a statistical manner: in flat areas the 
heights of neighbouring points would be highly correlated leading to large 
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covariances whereas in highly undulating areas we would expect small 
covariances (i.e. the height of a point would be largely unrelated to the 
heights of neighbouring points)~ This procedure is in contrast to the better 
known process of fitting a mathematical surface to the known points and using 
it to predict the heights of other points. 

Hence before discussing the technique of least squares collocation in detail 

it is necessary to consider the computation of covariance matrices for 
quantities that are, in principle, non-stochastic. 

9.1 Covariance matrices 

Ill 1 Ill 4 
Ill 

Ill 2 
Ill 3 

Ill 
1!1 

Ill n 

Fig. 9.1 

Consider n points (Fig. 9.1) at which we know the value of a ~uantity {e.g. 
height, gravity anomaly, deviation of the vertical or a coordinate trans-
formation parameter) u, i.e. we know u1, u2 , . .• , un. One method of determining 
a covariance function would be to proceed as follows. 

First we might assume that the correlation of the quantity between any two 
points i and j is a function only of the distance, d .. , between them. Then 

~J 

using all n1 pairs of points separated by a distance of up to r 1 metres we 
compute their covariance from ' 

1 = - I: u . u. 
nl ~ J 

(9.1) 

The process is then repeated using all n2 pairs of points separated by a 
distance greater than r 1 and less than r 2 metres etc. Generally we can write, 

for the nk pairs of points separated by a distance greater than rk-l and less 

than rk metres, 

= u.u. 
~ J 

(9 .2) 
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11 
I 

' '• ,. 
j' 

we ·can now plot, e . g. Fig. 9.2, the covariance histogram and draw a curve to 
represent the covariance function. The covariance matrix for t he n points 

c 

rl 

is now written as 

ell cl2 

c c21 c22 
= u 

L 
I 
I 

r2 

Fig. 9.2 

--, c3 

r3 

cln 

c2n 

c nn 

:-1 Cs 

r4 r5 

(9 . 3) 

where any individual element c .. , corresponding to t he covariance between 
~J 

points i and j, is determined simply by computing the distancs .r . . between 
~J 

them and reading off the value of c from . the curve in Fig. 9 .2. AlternativelY 
a mathematical function, e.g. 

cij = a exp(- b rij) (9. 4) 

where a and b are constants, could be fitted to the data and subsequentlY us~ 
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ly 

to ~ompute each element of C • Once a covariance function has been computed 
u 

from a set of data it would be common to use the same function for other 
similar problems, especially those that do not involve enough data to enable 
an internal computation of the covariance matrix. 

For some problems it is possible to compute theoretically the form of the 
covariance function . This is particularly appropriate in physical geodesy 
where much work has been done on the "spatial covariance function of the 
anomalous potential". For instance Moritz (1980,84) quotes the general form 
of this and Tscherning and Rapp (1974) quote explicit forms of covariance 
functions for a variety of geodetic quantities. Furthermore, for some 
problems we use idealised forms of covariance matrices based on the manner in 
which we would like a quantity to behave (rather than perhaps how it actually 
does) , e.g. Grafarend (1974) and the use of the Taylor-Karman covariance 
structure for geodetic networks. 

We now extend the concept of the covariance matrix to cover the situation 
shown in fig. 9.3 where we have a quantity, u, known at points 1,2,3, etc . 

B 1 

a 5 

a 3 
B 6 

c 
a 

B b 

B 2 B 4 a 7 

Fig . 9.3 

but unknown at points a,b,c. In this case we find it convenient to partition 
the complete vector u into two parts u1 and u2 

(9 . 5) 

where u1 contains the values of the quantity at points 1,2,3, etc. (called 
data points) and u2 contains the values at points a,b,c, etc. (called 

computation points). Then the covariance matrix of u is correspondingly 
~d 1 partitioned 
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c = u 
(9.6) 

where the generally non-square matrices c12 and c21 (notethat c12 = c~1 ) are 
often termed the cross-covariance matrices between the data and computation 
points. All the elements of C are determined from formulae such as (9.4) i n 

u 
the manner already described. 

Finally it is emphasised that the covariance matrices discussed in this section 
do not relate to observational errors. If there are observations at the data 
points then these observations will of course have a covariance matrix related 
to the precision of t he measurements, but this has nothing to do with C , 

u 
which describes how a particular quantity is spatially (or possibly temporally) 
varying. 

9.2 Least sguares prediction 

As a preliminary to least squares collocation we will consider the simple case 
of least squares prediction. Referring to 9.1 and Fig. 9.3, let u

1 
be a 

vector of known quantities at points 1,2,3, etc. and let u2 be the unknown 
values of the quantities at a,b,c, etc. Again it is emphasised that we are 
not here concerned with measurement errors, i.e. u

1 
i s perfectly known, but i t 

* is required to estimate u2 . Any linear estimates of u2 , say u2,must be of the 
form 

= 

where Q is a linear transformation to be determined. 

* Let e* be the true error of the estimate u2 , then 

e* = 

and substituting (9.7) in (9.8) we have 

which can be rewritten as 

+ [Q I -I] 
[~~] 
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n 

:a 

.ly) 

~se 

it 

the 

Then applying (4.16) to (9.10) and using (9.6) we obtain the covariance matrix 

of e* 

which multiplies out to 

and reorders to 

c * = e 

Now c21c~ic12 is subtracted and added to (9.13) to yield 

(9 .11) 

(9.12) 

(9.13) 

ce* = c22- c2lc~icl2 + QcllQT- QC12- c21QT + cJlciicl2 

(9.14) 
-1 Since c11c11 = I (9.14) can be written in the expanded form 

c * e 
-1 T -1 - 1 T 

= c22- c2lcllcl2 + QcllQ - acllcllcl2- c2lcllcllQ 

(9.15) 

T 
which, after putting cl2 = c21' becomes 

ce* = c22- c21ciic~1 + (Q- c2lcii)cll(Q- c21cii)T (9.16) 

We can write {9.16) as the sum of two matrices viz. 

Ce* = F + G (9.17) 

where 
F (9.18) 

and 
G = (9.19) 

Hence we have derived an expression for the precision of any linear estimate, 
u;, of u2 • We now pose the question: what choice of Q in (9.7) will result 
in the best estimate of u2? Examination of (9.18) shows that F is independent 
of Q; hence we are only concerned with the effect of Q on G in (9.19) . In 
fact any choice of Q will yield a matrix G with non- negative diagonal elements. 
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i 

11 

This is because the ith diagonal element of G in (9.19) is given by the 

quadratic form 

T 
Gii = g en g (9.20) 

-1 where g is the ith row of Q - e
21

e
11 

and e11 is positive-definite . Hence any 

* choice of Q will make the variances of the error in each element of u2 equal 
to or larger than the diagonal elements of F. The minimum var i ance estimate 

will therefore be obtained when G is a null matrix, i.e. 

(9.21) 

or 

(9 . 22) 

Substituting (9.22) in (9.7) gives the best (in t he sense of minimum variance) 

linear estimate of u2 as 

= (9.23) 

which, because of its minimum variance property , is also termed the least 
squares estimate. (9. 23) is often written in t he following manner for the 

prediction of u at any particular computation poi nt p: 

A 

[cpl cp2 • •• cpnJ u = ell c12 p (9 . 24) 

c21 c22 

• . 
• 

cnl cn2 c u nn n 

where c . represents the vector of covariances between point p and the ith pl ~ 

data point and all other symbols are as previously defined, i.e . u1 , u2 , ••• , 00 

are the values of the quantity at the data points and the square mat rix t o ~ 
inverted is the covariance matrix of the quantities at t he data points. 

Finally, it is worth noting that the evaluation of t 2 from (9.23) does not, in I 
practice, involve the inversion of c11 • This is because the product Ci~u1 c~ I 

be replaced by a vector y where y is the solution to the square set of linear 

equations e11y = u1 • 
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g,3 The least sguares collocation eguations -
In its simplest form we can consider least squares collocation as a direct 
extension of least squares prediction to the case where the quantities being 
determined at the computation points are not generally the same as those being 
measured (or known) at the data points. For instance in physical geodesy, 
from which the technique evolved and in which it finds its greatest application, 
the quantity to be estimated is generally the anomalous potential and the 
measured (or known) quantities are usually gravity anomalies and/or deviations 
of the vertical. Furthermore, the general collocation model is also able to 
take into account measurement errors at the data points and the possible 
requirement to compute certain parameters during the prediction process. For 
instance we may wish to recover the parameters of the normal gravity field in 
the aforementioned physical geodesy example, or in the application of the 
method to coordinate transformations we may wish to determine the parameters 
of a specified transformation. Here we will treat the problem in its most 
general form and later the least squares prediction formula will be shown to 
be a special case of collocation. 

Consider a set of data points at which we have made n observations. Let there 
also be q computation points and m parameters to be recovered. As usual we 
will denote the true values of the modelled observed quantities and the 
parameters by the vectors Z and x respectively. We can write down n, generally 
non-linear, observation equations. of the form 

F(x) - ::e = 0 (2.20) 

Also we rewrite (2.1) in the form 

1- = Z + e (9.25) 

where e is the total "error" in the observations (i.e. the difference between 
the observed and modelled quantities). In collocation this total error is 
considered to be the sum of two independent errors usually called the signal 
and noise, and denoted by the symbols s 1 and n respectively. Hence (9.25) is 

written as 

(9.26) 

After linearising (2.20) using (9.26) we obtain 

- 149 -

11 
I' 



P
au

l A
 C

ro
ss

- U
C

L

I. 

I' 
I 
I 

,, I 

! , I 
1, I 
1.11 

Ax - b + s1 + n = 0 (9.27) 

An explanation of the terms signal and noise is now necessary. The noise is 
simply the random measurement error in ~; it is basically the residual 
vector, v, in all the previous sections of this Working Paper, with a change 
of sign. The signal can be most usefully interpreted as the inability of the 
chosen model, when simplified to 

Ax = b + v 

= b - n (9.28) 

to describe completely the physical situation. This may be for one of two, 
often indistinguishable, reasons. 

(i) The model F(x) = l may be incomplete and/or inaccurate, i.e. there may 
be some parameters that have not been considered and/or those that have 
been considered may not have been correctly related to the observed 
quantities. 

(ii) The measurements may have systematic errors that have not been 
modelled, either by the inclusion of suitable parameters or by the 
selection of the correct stochastic model (i.e. the weight matrix). 

In other words there may be some signal in the system that is not being 
modelled by (9.28) and the measurement noise covariance matrix, which we now 
denote by C • The meanings of the terms may be further clarified by an n 
example. 

Consider the problem of the geodetic datum transformation from an established 
local (astrogeodetic) coordinate system, such as OSGB36 (the British national 
mapping coordinate system) to the satellite-Doppler coordinate system. The 
process would be to observe Doppler coordinates (X~, Y~, Z~) at, say, ~ poin~ 

L ~ L ~ L ~ 
(i.e. i = 1,2, .•• , p) with known coordinates (X., Y., Z.) on the local system. 

~ ~ ~ 

We now select a transformation model, say translation only, and write down the 
collocation observation equations as follows 

Ax - b + s 1 + n = 0 (9.27) 

where 
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I 
ts 

~. 

1 0 0 xo 
1 

XL 
1 

0 1 0 YD 
1 

yL 
1 

0 0 1 ZD 
1 

zL 
1 

1 D D XD 
2 

XL 
2 

A = 0 1 0 b = YD yL 
( 3p X 3) 2 2 

0 0 1 

and the translation parameters are 

In this case n would represent the noise (random observational error) of the 
Doppler measurements and s 1 would be the signal due to the following two 
causes, of which the second is likely to be the larger in practice: 

(i) oversimplification of the basic model - wa should also, in practice, 
be including parameters for rotations and possibly a scale difference 
between the two coordinate systems 

(ii) distortions in the local coordinate system due to a variety of causes 
such as lack of scale control, computation in blocks, etc. 

The problem of collocation is now to estimate simultaneously the following: 

(i) the parameters x 

(ii) the signal s 1 and noise n at the data points 

(iii) the signal s 2 at the computation points, i . e . in the foregoing example 
points at which it is required to transform from local to Doppler 
coordinates but at which there are no Doppler measurements. 

It is an essential prerequisite to the application of least squares collocation 
that we know the covariance matrices of both the signal and the noise . C , the n 
covariance matrix for the noise, is obtained in the usual way (it is equivalent 
to C~ in 4 . 2) and C

5
, the signal covariance matrix for both the data and 
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computation points, by a study (such as that outlined in 9 . 1) of the 
variation of the signal where it is known or can be estimated. c will n often 

be diagonal but c will invariably be a full matrix as the whole point of s 
differentiating between the signal and the noise is that the signal is highly 
spatial ly (or possibly temporally) correlated and has completely different 
statistical proper ties to the noise. It shoul d be noted that the statistical 
expectations of both the signal and the noise are zero, i.e. 

E(s) 

E(n) 

= 

= 

0 

0 

(9.29) 

(9 . 30) 

The derivation of the collocation equations now proceeds as follows . Let s 
be a vector containi ng the signal at both the data and computation points, 
i.e. 

s = (9.31) 

Then (9. 27 ) can be rewritten as 

Ax - b + Bs + n = 0 (9.32) 
with 

8 = [I ·I o] (9 . 33) 

Note that if we have q computation points then 8 will have dimensions 
(n + q) x n with I, a unit matrix, being n x n and 0, a null matrix, being 
q x n . 

We now wish to estimate x, s and n in ( 9. 32) using the method of least squares, 
i.e . minimising 

T 1 T -1 
s c- s + n c n 

s n 

Hence, using Lagrange ' s method of undeter mined multiplier s as in ( 3.12), we have 

= T - 1 T - 1 T s C s + n C n + 2k (Ax - b + Bs + n) 
s n 

(9.34) 

which is minimised by differentiating as foll ows 

b~ = 2ATk = 0 bx (9 . 35) 

M = 2C-l~ + 2BT~ = 0 
~s s (9.36) 
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= = 0 (9.37) 
11) 

Also the least squares estimates must satisfy (9.32), viz • 

. y 1\ A A 
Ax - b + Bs + n = 0 (9.38) 

.1 Now after dividing (9.35) to (9.37) by 2 and combining them with (9.38) we 
obtain the fol lowing least squares hypermatrix 

-1 0 I 0 "' 0 c n n 
0 c -1 BT 0 A s 0 s (9.39) A = 
I 8 0 A k b 

0 0 AT 0 L~ 0 

which, after applying (3.21 ) to eliminate 1\ reduces to n, 

-1 BT A 
0 c 0 s s 

A 
(9 . 40) 8 - C A k = b n 

AT 0 A 
0 0 X 

A further application of (3.21), to eliminate ~' leads to 

T :] [: l [: l -(C + BC 8 ) n s (9.41) = 
AT 

(9.33) (9 . 31), the T (9.41) Now, using whilst noting expression - (C + BC 8 ) in 
35 1 n s 

can be simplified as fo l lows 

T [I o] -(C + BC 8 ) = - c - c c I n s n sl sls2 
(9 . 42) .. 

1ave c c 0 
s2sl s2 

= -(C + c ) n sl 
(9.43) 

where C and C are the covariance matrices of the signal at the data and 
sl s2 

computation points respectively and C and C are their cross covariance 
sls2 s2sl 

matrices. Substituting (9.43) in (9 . 41) gives 
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~I 

: J [: J = [: J 
Application of (3.21) to (9.44) leads to 

A 
X = 

which is the least squares collocation expression for the parameters. 

Similarl~ application of (3.20) to (9.44) produces 

A 

k = -(C 
n 

-1 J\ 
+ C ) {b - Ax) 

sl 

Then substituting (9.46) in (9.36) and rearranging leads to 

A 
s = 

(9.44) 

(9.45) 

(9.46) 

(9.47) 

which is the least squares collocation expression for the signal at both the 
data and computation points. The noise at the data points is obtained by 

substituting (9.46) in (9.37) to yield 

c (c + c )-1 (b - A~) 
n n s 1 

A 
n = (9.48) 

Hence we have derived expressions for the least squares estimates of the 
parameters, the signal at both the computation and data points, and the noise 
at the data points. Next we must derive the corresponding covariance matrices 

so that we can measure their precision. First we need an expression for the 
covariance matrix of the vector b. 

From (2.16) in the special case of observation equations 

b = F(x0
) - t 

and substituting (9.26) leads to 

b = F ( x
0 

) - ] - n - s 
1 

(9 .50) 

0 -Then applying (4.16) to (9.50), whilst noting that F(x ) and t are 
not stochastic and that we have already assumed n and s1 to be independent, we 

have 

c + c 
n s

1 

( 9. 51) 

Now we substitute (9.51) in (9.45) to yield 
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38 

~ es 

-

(9.52) 

Application of (4.16) to (9.52) then produces the f ollowing expression for the 
covariance matrix of the parameters: 

(9.53) 

which simplifies to 

(9.54) 

= [AT(C + C )-1AJI1 (from (9.51)) 
n s

1 
(9.55) 

To obtain the covariance matrix of the least squares estimate of the signal, 
at both the computation and data points, we substitut e (9.51) and (9.52) in 
(9.47) to yield 

A s 

Then substituting (9.54) and applying (4.16) to (9.56) leads to 

which simplifies to 

CA = s 

(9 .56) 

(9.57) 

(9.58) 

Then substituting (9.51) and (9.54) in (9.58) leads to the following expression 
for the signal covariance matrix 

Cl\ = C BT(C + 
s s n 

T 
- c s (c + s n 

C )-1sc 
s 1 . s 

C )-1A(AT(C + 
s

1 
n 

(9.59) 

A similar treatment of (9.48) leads to the covariance matrix for the least 
squares estimate of the noise at the data points 

c"' = c (c + n n n 

- C (C + n n 

c )-1c 
s

1 
n 

C )-1 A[AT (C 
s

1 
n 
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Equations (9.45), (9.47), (9.48), (9.55), (9.59) and (9.60) are the working : 
formulae _for ·least squares -collocation. 

9.3 . 1 Special cases 

The following three special cases can be identified. 

(i) Collocation without parameters 

Many practical problems to which collocation is suited do not require 
the recovery of parameters, i.e. the system is completely modelled by 

the signal and the noise. For instance when using collocation to 
determine geoid-ellipsoid separation from gravity anomalies the only 
unknowns are the signal (separations) and noise (gravity anomaly 
measurement errors). In such circumstances A= 0 and (9 . 47), (9 . 59), 
(9 . 48) and (9.60) simplify to 

/; C BT(C c )-1 b s = + s n sl 
(9.61) 

with 
c~ = C BT(C + c )-1sc 

s s n s1 s (9.62) 

and 

" C (C + c )-1 b n = n n sl 
(9 .63) 

with 
CA = C (C + c )-1 c 

n . n n s 1 n (9.64) 

(ii) Collocation without parameters and without noise 

It is not unusual to consider that the observed quantities are without 
error, i.e. C = 0. This may be either because t he particular model is 

n 
extremely insensitive to observational errors, e . g. in certain 
circumstances small random errors in deviation of the vertical cause 
insignificant errors in geoid-ell ipsoid separation, or because the 
statistics of the observations are unknown. The least squares 
collocation equations for the signal (now the only unknown), (9.47) and 
(9.59), then simplify to 

" C BTC -lb s = s sl 
(9.65) 

with 

CA = C BTc-1sc 
s s sl s 

(9.66) 
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(iii) Least squares prediction 

If we further simplify the problem to the situation where the observed 
(without noise) quantities and the signal are the same (e.g. both gravity 
anomalies or both transformation distortions) then , using the notation 
of 9.2, we have 

(9.67) 

b - 11 
I 

(9 . 68) 

c = e 
sl ul 

(9.69) 

and 

e e ell e12 sl sls2 

e = = s e c c21 e22 s2sl 52 

(9.70) 

Then, using (9.33) and ( 9. 70)' we have 

J -l C BT ~11 ::: l~_ = s 
c21 

(9 . 71) 

- ~11 J - [ell I e21J T - e -
21 

(9. 72) 

Substituting (9 . 72) in (9 . 65) yields 

" [ell J T - 1 s = c21 ell b (9.73) 

(9.74) 

Finally, substituting (9.67) and (9.68) in the left and right hand sides 
respectively of (9 . 74), we have 

(9.75) 

i.e. (9. 76) 
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and 

= (9.77) 

with (9.77) being identical to (9.23). Hence we have shown least squares 
prediction to be a special case of least squares collocation. 

9.4 Closing remarks 

Least squares collocation is a large and highly advanced mathematical subject. 
This is exemplified by Moritz (1980), the modern standard work in physical 
geodesy, which devotes about 250 pages to it. The major development areas are 
in the determination of suitable covariance matrices for its multitudinous 
applications and in numerical and organizational techniques, for example 

step-by-step collocation (often called "stepwise" collocation), to increase its 
efficiency. There is currently much discussion on the proper role and 
interpretation of the signal covariance matrices f or both collocation and simple 
least squares prediction. This is largely because surveyors and geodesists are 
used to using covariance matrices to describe observational errors and hence 
unknown quantities sampled from infinite populations. The use of covariance 
matrices to describe the variation of a finite population (e.g. gravity 
anomalies or height) is, however, not unknown i n other sciences, for example 
Moritz (1978) points out that the world 1 s human population is finite but we 

commonly take small samples and make inferences based on these. 

Finally it is reiterated that this Working Paper is not an attempt at a full, 
in depth treatment of collocation theory. The objective has been to present 
the topic as one of a family of advanced least squares techniques, to point to 
some of its applications and to interpret some of the related terminology. 
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Appendix 1 Proof that E(a 2 ) = 1 
0 

We define 2 vTWv/(n-m) a = 0 
(ALl) 

and wish to prove that 

E(a 2 ) = 1 
0 

(Al.2) 

We begin with a set of observation equations 

Ax = b + 0 (Al. 3) 

and introduce ~ as the true observational errors and o~ as the true errors 
of the least squares estimates of the parameters. Hence 

A(x + o~) = b + ~ (Al.4) 

Premultiply (Al.4) by ~TW to obtain 

= (Al. 5) 

which rearranges to 

CTW(Ax - b) AT tTw~ + v WAOx = (Al.6) 

but from (3.47), }wA = o, and substituting (A1.3) in (Al. 6) gives 

,..Tw" V V = vT~ = ATW~ (Al. 7) 

Now premultiplying (Al.4) by ATW gives 

T T = A Wb + 11 W~ (Al.B) 

which rearranges to 

T A T A 
~ W(Ax - b) + ~ WAox (Al.9) 

Substituting (Al.3) and (Al.?) in (Al.9) gives 

(Al.lO) 

Taking expectations gives 

= (Al.ll) 
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but 
E(ATW~) = n (for n observations) 

and it will be shown that 

= m (Al.l3) 

Substituting (Al.l2) and (Al.l3) in (Al.ll) gives 

T To prove (Al.l3) we premultiply (Al.4) by A W to give 

(Al.l4) 

but ATWA~ = ATWb (normal equations) so (Al.l4) becomes 

i.e. (Al.l5) 

Premultiplying (Al.l5) by ATWA gives 

ATWAO~ = ~TWA(ATWA)-lATW~ 

= Tr[ATWMTWA (ATWA)-lJ- (Al.l6) 

now E(WMT) = I so taking exp~ctations in (Al.l6) gives 

= Tr (I) 

= m because there are m parameters 
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3) 

.4) 

L5) 

16) 

Appendix 2 Derivation of formulae for w testing and external reliability 

The purpose of this appendix is to derive the formulae 

A T /\/( T )t w. = e. Wv e. WCAWe. 
~ ~ ~ V ~ 

(5.22) 

r:ll\ = (e. TWC"We. )-! 
d. ~ V ~ 

(5.23) 
~ 

" ~./a.~~ w. = 
~ ~ v. 

~ 

(5 . 25) 

and 
1!- u At. s: 6. y.aw 
~ ~ ~ 

(5.36) 

used in 5.4.1.2 and 5.4.1.3 for blunder detection and the measurement of 
reliability. We begin with the linearised model for the special case of 
observation equations, which is given in 2.3.1 as 

Ax = b + v (A2.1) 
where 

b = L - F(x0
) (A2.2) 

and 
A = bF/bx (A2.3) 

The least squares estimates of x and v are given in 3.1.1 as 

(A2.4) 
and 

A A 
V = Ax - b (A2.5) 

= (A2.6) 

with covariance matrices given in 4.3 as 

Cl\ = (ATWA)-l 
X 

(A2.7) 
and 

CA = W-l- A(ATWA)-lAT 
V 

(A2.8) 

formulae (A2.2) to (A2.8) represent the real computations that would be 
carried out for a particular data set (irrespective of whether-or not it 
contained a gross error). If, however, the ith observation i ncluded a gross 
error ~. then, although (A2.1) and (A2.2) were used for the computations, they 

~ 

would no longer describe the physical relationship between the parameters and 
the observations. The correct linearised model would be 
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Ax = b - e . ~ . + v 
~ ~ 

(A2.9) 

where e . is a null vector but for the ith element which is unity, i.e. 
~ 

e. 
~ 

= [o o ... 1 ... o o]T (A2.10) 

Now in order to detect gross errors Baarda (1968) has introduced a test 
statistic G. given by 

~ 

where 

1\ 11 
w. = d./a~ 
~ ~ . 

~ 

" 1\ c 
d. = .t. - .t . 
~ ~ ~ 

.t. is the ith observed value 
~ 

(A2.ll) 

(A2.12) 

1\ c 
.t. is the ith observed quantity computed from the parameters 
~ 

derived from a least squares computation using all observations 
except .t. 

~ 

" aa. is the standard error of di 
~ 

It is clear that, since least squares estimates have been shown (in 6.1) to 
be unbiased 

where .t . is the true value of the ith observed quanti ty. 
~ 

Taking expectations in (A2.12) gives 

E(d.) 
~ 

= E(.t.) - E(i'. c) 
~ ~ 

but, since .ti contains a gross error ~i' we can write 

E (.t . ) 
~ 

= .t. + A . 
~ ~ 

Substituting (A2.13) and (A2.15) in (A2.14) gi vss 

E(a.) 
- -

= .t. + ~- - .t. = ~-
~ ~ ~ ~ ~ 

and rewriting (A2.16) gives 

" -
~- = E(d.) = d. 
~ ~ ~ 

which can be substituted into (A2.9) to yield 
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J) 

1) 

2) 

tions 

0 

.3) 

.4) 

L5) 

l6) 

17) 

Ax + e.d. - b- v = 0 
J. J. 

(A2.18) 

We now apply Lagrange 1 s method to determine the least squares estimates of x, 
d. and v which we write as ~' d. and C respectively. Hence we have 

J. J. 

with 

= 

bi/~d . = 
J. 

"'T 2k e. 
J. 

= 

= 

0 

0 

:. we - k = 0 

. T" . . e. k 
J. 

= 0 

= 0 

(A2.19) 

(A2.20) 

(A2.21) 

(A2.22) 

Hence we write the least squares hypermatrix for the simultaneous solution 
of (A2.18), (A2.20 ), (A2.21) and (A2.22) as 

w 
-I 

0 

0 

-I 0 
0 A 

AT 0 
T e. 0 

J. 

0 

e . 
0 

0 

J. 

1\ 
V 

c 
11 
X 

a. 
J. 

= 

0 

b 

0 

0 

(A2.23) 

Application of the block elimination process, (3.21), to eliminate C from 
(A2.23) gives 

-1 A 

u 
b -W e . 

AT 
J. 

0 0 = 0 
T 

0 0 0 e . 
J. 

(A2.24) 

A 
A similar process eliminates k from (A2. 24) to give 

[AT~A T J [~J [AT~b J A We. 

e.Tw:. 
= 

e . WA e. Wb 
J. J. J. J. 

(A.2.25) 

/\ 
Finally the elimination of x from (A2.25) yields 

We now put 

and 

di = GiTWei- eiTWA(ATWA)-lATWei]-l [eiTW- eiTWA(ATWA)- lATW]b 

(A2.26) 

p 

q 

= 

= 

T e. W 
J. 

(A2.27) 

(A2.28) 
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Then substitution of (A2.27) and (A2.28) in (A2.26) gives 

(A2.29) 

Application of the propagation of error law, (4.16), to (A2.29) then gives 

ad. 2 = [psi - pqeijl [P - pq] Cb [p T - q T p TJ [psi - pqeiJl 
~ 

-1 Then putting Cb = W and expanding (A2.30) gives 

0'~.2 = [psi_ pqei]-1 [pw-lpT _ pqW-lpT _ pW-lqTpT 
~ 

-1 T T] [ l-1 + pqW q p pei - pqeiJ 

(A2.3D) 

(A2.31) 

The middle term of (A2.31) is now considered using (A2.27) and (A2.28) 

middle term = T -1 e. WW We. 
~ ~ 

which reduces to 

middle term = T T T -1 T e. We. - e. WA(A WA) A We. 
~ ~ ~ ~ 

= pe. - pqe. 
~ ~ 

since the third and fourth terms of (A2.32) cancel out. 

Now substituting (A2.34) into (A2.31) gives 

Also substituting (A2.8) in (A2.35) yields 

2 
0'" d. 

~ 

We now substitute (A2.35) into (A2.26) to give 
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l) 

l) 

L) 

2) 

3) 

4) 

i5) 

36) 

and substituting (A2.6) in (A2 . 37) gives 

~ 2 T A 
d. = -ad~ e . Wv 
~ . ~ 

~ 

(A2.37 ) 

(2.38) 

and, noting that for a matrix containing a single element the inverse is simply 
the reciprocal, we can substitute (A2.36) into (A2.38) to give 

and 

&. = 
~ 

a" = d. 
~ 

which is (5.23). 

T ·T 
e . wO/(e . wc~we . ) 
~ ~ V ~ 

Then the Q statistic of (A2.11) is given by 

" W. 
~ 

= - T A/ T ~ e. Wv (e. WC"We . )2 
l. ~ V l. 

(A2.39) 

(A2.40) 

(A2 . 41) 

which is (5 . 22) (note that the minus sign can be ignored as we are only 
i nteres ted in the magnitude of~.) . ~ence we have proved (5.22) and (5.23). 

l. 

In the special case of W being a diagonal matrix (whose ith diagonal element 

1/a . 2 2 the ith observation) 
' 

where a . is the variance of 
~ l. 

null vector but for the ith element which will 

e iT W = [ 0 0 . • • 1/a i 2 • • . o o J T 

In this case the numerator of (A2 . 41) becomes 

T 1\ - e . Wv = 
l. 

11. I 2 v.,a. 
l. l. 

and the denominator becomes 

T t (e. WC We . ) = 
l. V l. 

Then (A2.41) becomes 

G. = 'V . ja, 
l. l. V. 

l. 

2 be 1/a . 
~ 

ar. /a.
2 

V. l. 
l. 

' 

then T e. W becomes a 
l. 

i.e . 

(A2.42) 

(A2.43) 

(A2.44) 

is 

where a, is the standard error of the ith residual 
V. 

hence (5.25) is proved. 
l. 

To derive (5.36) we proceed as follows. 
/\ 

Let. ~ be computed from the least squares estimates of the parameters by the 
linear transformation 
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" T.~~ 
W = S X 

(A2.4) and (A2.7) are combined to yield 

and if the ith observation includes a gross error A. its effect on the 
~ 

parameters will be Ax. where 
~ 

AX . = 
~ 

and 

1\ A 
Similarly, using (A2.45), we see that its effect on ~' A~ . , will be 

J. 

" T T 
A~. = s c~A WAb . 

J. X ~ 

(A2.45) 

(A2.46) 

(A2. 47) 

(A2.48) 

(A2.49) 

If W is diagonal (i.e. if we assume the observations to be uncorrelated), 
(A2.49) can be written, using (A2.4B), as 

" T 6.•". = s CAa w.A . 
'I'J. X i J. J. 

(A2.50) 

where a. is the ith column of A and w. is the ith diagonal element of W. Note 
~ J. 

that 

w. = 
l. 

l/a.
2 

~ 

T Now consider the product s c~a . in (A2.50), X ~ 

T 
s C"a· = X l. 

T T s EAE a. 
J. 

(A2.51) 

(A2.52) 

where E is a matrix of the eigenvectors of CA and D is a diagonal matrix whose 
X 

elements are the positive eigenvalues of c~. Note this decomposition is~always 
X 

possible with symmetrical positive-definite matrices (see Fox (1964)). 

Putting 
z = 

in (A2.52) gives 

T s CAB. = 
X ~ 

T T 
s ZZ a. 

~ 

Furthermore if we define 

p = 
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5) 

5) 

7) 

B) 

9) 

.o) 

ote 

il) 

j2) 

10S8 

Lways 

53) 

54) 

ss) 

and T 
q == Z a. 

~ 

then (A2.54) simplifies to 

T T s CAa. = p q 
X ~ 

Now for any vectors p and q 

T [ T ~ T ~] p q/ (p p)2(q q)2 

(A2.56) 

(A2.57) 

~ l (A2.5B) 

because the left hand side of (A2.58) is the cosine of the angle between the 
two vectors (as defined in n- dimensional space). 

Rearranging (A2.58) we have 

(A2.59) 

Then substituting (A2. 55), (A2.56) and (A2.57) in (A2.59) yields 

T (sTZZTs)t(a.TZZTa. )t s CAa. 5: 
X l. l. l. 

(A2.60) 

Now, noting from (A2.52) and (A2.53) that 

ZZT = C;. 
X 

(A2 . 6l) 

we rewrite (A2.60) as 

T T ~ T .l. 
s CAa. ~ (s CAs) 2 (a. CAa.) 2 

X l. X ~ X l. 
(A2.62) 

Then postmultiplying both sides of (A2.62) by w.Ll . yields 
l. ~ 

T T .l. T .l. 
s c .... a.w . Ll . ~ (s C.As) 2 (a. CAa.) 2w.Ll. 

X l. l. J. X J. XJ. J.J. 
(A2 . 63) 

Now we can substitute (A2.50) and (A2.5l) in (A2.63), whilst noticing that 

2 T 
r:J" = s CAS 

w X 
(A2 . 64) 

and 
A 2 T 
r:J . = a. c ..... a. 

J. J. X J. 
(A2.65) 

and rearrange to yield 

A A 2 
Alf. 5: (a.ll./a . )a~ 

J. J. J. J. 
(A2.66) 
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Now if the size of the blunder A. is equal to the boundary value as defined 
~ 

in 5.4.1.2, i.e. 

A. = A.u 
~ ~ 

we can write, from (5.32) and (5.33) 

A. 
~ 

= U 21 6. a. 1aA 
~ ~ V. 

~ 

Then substituting (A2.68) in (A2.66) gives 

. e. 

(A2.67) 

(A2.68) 

,, u ~ ll.V ~ 6 . .,.-- a~, (A2.69) 
~ a ' V. 

~ 

and, from (5.37), the bracketed term in (A2.69) is equal toy., so we can 
~ 

write 

(A2.7D) 

which is (5.36), which was required to be proved. 
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1ed 

'67) 

.68) 

.69) 

1 

.70) 

App.endix 3 Numerical examples 

A3.1 Combined case 

Photographic observations to a satellite have produced the following five 

observations of time and altitude with standard errors of 0.001 sec and 2~0 
respectively. 

Time Altitude 

18 hrs 04 m in 10.1152 sec 45' 17 1 40!.'1 
18 04 15.2370 47 51 25.6 

18 04 20.2220 50 20 58.2 

18 04 24.9580 52 42 59.6 

18 04 29.7820 55 07 43.9 

It is required to determine 

(i) the least squares estimates of the slope and intercept of the straight 
line in which the satellite is assumed to be moving during the period 

of observation 

(ii) the standard errors of these estimates 

(iii) the least squares estimate of the altitude of the satellite at 
18 hrs 04 min 22.0 sec and its standard error. 

The basic mathematical model for the ith observed time and altitude is writt en 

as 

ex, J) - t. - (A3.1) f . = xl + X - Ct. = 0 
J. J. 2 J. 

where 
[xl - JT true value of the slope, X = x2 ' :1 = 

x2 = true value of the intercept 

] [tl - t2 t5 - JT = Q'l Q'2 as 

with t. and et. being the true values of the ith time and altitude respectively. 
J. J. 

We note immediately that because (A3.1) cannot be simplified to 

f. (x) 
J. = 1. 

J. 

or 
f. (1) 0 

J. 
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the problem requires the use of the combined least squares method. Also the 

problem is non-linear and hence approximate values of x are required. For 
convenience we reduce the number of digits in the problem by subtracting 
18 hrs 4 min 10 sec from the times and 45' from the altitudes and then express 
the observations in units of seconds of time and arc respectively, viz. 

tl = 0.1152 ctl = 1060.1 

t2 = 5.2370 ct2 = 10285.6 

t3 = 10.2220 ct3 = 19258.2 

t4 = 14.9580 ct4 = 27779 .6 

t5 = 19.7820 Q'5 = 36463.9 

Approximate values are computed as follows 

from f 5' putting - o, 0 1843 x2 = xl = 
from fl, putting 1843, 0 850 xl = x2 = 
Then, using (2.17), (2 .18)' (2.16) an.d (3.7) respectively, we obtain matrices 
A, .et b and W .as follows: 

tl 1 0 x1 -1 0 0 0 0 0 0 

t2 1 0 0 0 
-1 0 0 0 0 xl 

A = t3 1 c 0 0 0 0 0 
0 0 = x1 -1 

t4 1 0 0 0 0 0 0 0 
X -1 1 

t5 1 0 0 0 0 0 0 0 0 

0 t - 0 
Q' - xl x2 1 1 

0 0 
Q' - xl t2 - x2 2 

b = 

a 2 0 
~ 2 a 

a 2 '1. 2 
-1 

t2 a 
w = Q'2 

2 
0 C1t 

5 

Substituting the observations and their standard errors along with the 
approximate values of the parameters then leads to 
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0.1152 1 1843 -1 0 0 0 0 0 0 0 0 

5.2370 1 0 0 1843 -1 0 0 0 0 0 0 

A = 10.2220 1 c = 0 0 0 0 1843 -1 0 0 0 0 

14.9580 1 0 0 0 0 0 0 1843 -1 0 0 

19.7820 1 0 0 0 0 0 0 0 0 1843 -1 

-2.21 10-6 0 
4 

10- 6 
-216 . 19 

-1 4 
10-6 

b = -430.95 w = 
4 

10-6 
-637.99 

4 
10-6 -844.33 

0 4 

Using (3.25) we obtain the least squares estimate of x as follows 

= [

100.9914 
AT(CW-lCT)-lA 

6.8023 

= 

Hence the least squares estimate of the slope 

6.8023] 

0.6760 

-0.309211] 

4.590747 

[ 

- 42.929 ] 

5.645 

0 A I = x1 + x1 = 1843 - 42.929 = 1800.07 " sec 

and the least squares estimate of the intercept 

= X~ + ~2 = 850 + 5.645 = 855~64 
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In practice we would now take a new x0 equal to the above estimates and repeat 

the computation until ~ was insignificantly different from a null vector. 

We use (4.43) to give the standard errors df the least squares estimates of the 

slope and intercept respectively as follows 

1 
a,.. = (0. 030729)2 = 0.18 "/sec 
xl 

C'A = (4 . 590747)! = 2n4 
x2 

The least squares estimate of the altitude of the satellite at 
18 hrs 04 min 22 .0 sec and its standard error are obtained as follows. 

When time = 18 hrs 04 min 22.0 sec , t = 12 

azimuth = 45' + (12 X 1800.07 + 855.64} 11 

= 51° 14' 16~49 

In general " 4~ + t~l + ~2 et = 
A. 

= et + ax 
0 

where a = [t 1] 
2 a cl\, T 

C'A = a 
Cl' X 

= [12 1] [ 0.030729 -0.309211 J r:J -0.309211 4.590747 

C'/\ 
Cl' = 1n6 

It should be noted that this example could actually be solved in a simpler way 
without use of the combined least squares model. The procedure adopted here 

't 

has been chosen to exemplify the general approach to combined least squares 
problems rather than to show an efficient procedure for curve fitting problems. 
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3at 

the 

way 
1re 
!S 

1lems. 

A3.2 Special case of observation eguations 

5 

Fig . A3.1 

Two nearby offshore platforms are to be fixed from the fo llowing measurements, 
where the numbers in parentheses are their standard errors. 

Distances 

1 5 
2 5 
3 5 
2 6 
3 6 
4 6 
5 6 

Azimuth 

5 6 

Position 

87921.2 m 
114948.5 
147802 . 4 
114737 . 8 
146667 . 7 
1461 56.3 

1981.81 

(5 m) 
(5 m) 
(5 m) 
(5 m) 
(5 m) 
(5 m) 
(0 . 02 m) 

316' 18 1 05~7 ( 311 ) 

Eastings of 5: 255086.5 m (3 m) 
964173.1 (3 m) Northings of 5: 

Given that stations 1, 2, 3 and 4 have known coordinates of 
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1 
2 
3 
4 

f. 
216498.72 m 
163304.56 
108791.23 
109007.10 

N 

885174.98 m 
894962.77 
943117.05 
986075.53 

carry out the following. 

(i) Compute the least squares estimates of the coordinates of stations 

5 and 6. 

(ii) Compute the least squares residuals and test for any gross errors in 

the observations. 

(iii) Estimate the precision of the position-fix by computing the following: 

(a) the absolute error ellipses at stations 5 and 6 

(b) the relative error ellipse between stations 5 and 6 

(c) the standard errors of all azimuths and distances computed using 
the least squares estimates of the coordinates of stations 
5 and 6 

(d) the standard error of the angle subtended at station 5 between 
stations 6 and 2 computed using the least squares estimates of 
the coordinates of these stations. 

(iu) Assess the internal and external reliability of each observation by 
determining its T and Y factors. Compute the probability of accepting 
each observation with a gross error of four times its standard error 
if rejection is carried out using the w statistic with a 5% significance 
level. Also compute the effects of undetected blunders of four times 
their standard errorsin each observation on the least squares estimate 
of the derived azimuth between stations 5 and 6. • 

This problem contains three different types of observation: distance, azimuth 
and position. The first stage is to derive the general form of each observation 

equation. 

Distance between stations i and i 

Functional model f(x) = I: 

{<'Ei - )2 (N. - - )2 ~t - E. + Nj I = d .. 
J ~ ~J 

linearised model Ax = b + V 

- 174-



P
au

l A
 C

ro
ss

- U
C

L-

bf bf dN. M. "dE. of (d . . 0 

~E. 
dE. + bN. + bEj + oN. dN. = - d . . ) + V 

~ ~ J J l.J l.J l. l. J 
where •t 

0 {(E~ o)2 (N~ d . . = -E. + - N~)J l.J J l. J . 

Differentials are evaluated (at x = xo) as follows: 

f = { (Ei - E .)2 + (N.-N.)2}f 
J l. J 

bf t{(E~ -
2 2-! 

= E~) + (N~ - N~) } 2(E~ - E~) 1 bE. J l. J l. J l. 

= (E~ - E~ )Id~. l. J ~J 

Similarly 

bf o o I o = (N. -N . ) d . . oN. l. J l.J l. 

M = - ( E~ - E~ ) Id~ . bE. ~ J l.J J 

M. = -(N~ - N~ )Id~. oN. l. J l.J J 

Azimuth from stati on i to station j 

Functional model f(x) = I: 

tan-l {(E . - E. )I(N. - N.)} = et . . J l. J ~ l.J 

linearised model Ax = b + V : 

(et .. - et~.)+ V l.J l. J 

wher e 
oP.. = tan-1{(E~. - E~)I(N~ - N~)} l.J J l. . J l. 

Differentials are evaluated (at x = x0
) as follows: 

f = t an-1{(E . - E. )I(N.- N. )} J l. J l. 
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-1 I I 2 Note. that if y = tan x, bY bx = 1 (1 + x ); 

Of {1/[1 + 
2 

= (E.- E. ) / (N. bE. J ~ J 
~ 

-(N.-
o2 

= N. )/d .. 
J ~ ~J 

hence 

- N. )
2J} [-1/(N.- N.)] 

~ J ~ 

~Nf = {1/[1 + .(E.- E.)
2
/(N.- N.)

2J} [-1 (E.- E.)(N. - N.f
2-l] 

u. J ~ J ~ J ~ J ~ 

Similarly 

~ 

= 

= 

o2 
(E.- E. )/d . . 

J ~ ~J 

I o2 
(N. - N. ) d .. 

J ~ ~J 

~Nf = - (E.- E . )/d~~ 
V • J ~ 1J 

J 

Note that in practice the above four differentials are usually multiplied by 
206264~'8 to convert -t .h.e .. ':tlimen.sioris of the . li.neeris13tnoo.de1 f rom radians to 

seconds. ·' 

Position of station i 

Observed eastings and northings will lead to two equations . 

(i) for eastings functional model is 

E. = :t. 
~ 1 

where I . is the true value of the observed eastings , this is "linearis ed" 
~ 

(actually it is, of course, already linear) to 

dE. = 1- . - .t~ 
~ 1 1 

0 where 1- . and 1-. are the observed and approximate eastings. 
~ 1 

(ii ) Simi larly for northings 

dN. 
1 = 1-. - 1-~ 

1 1 

Now returni ng to the problem in hand we have ten observations and four 

param~ters; us ing t he usual notation we can write 
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-1] 

ed" 

and we will have ten observation equations of t he form 

f.(x) = :t. 
~ ~ 

- 0 Then using the following for approximate values of x, i .e. x 

5 

6 

E 

255086 .5 m 
253717. 3 

N 

964173.1 m 
965605.9 

and using the general forms of the necessar y differentials al ready developed 
we can write down directly the observation equations (2 . 22) as follows 

0.439 0.899 0 0 dE5 2.38 
0. 798 0.602 0 0 dN 5 -3 .64 
0.990 0.142 0 0 dE6 -0.39 

0 0 0.788 0.616 dN6 -0.67 

0 0 0.988 0.153 7. 16 
0 0 0.990 -0.140 = 5. 53 

0.691 -D . 723 -0.691 0.723 - 0.01 
- 75.248 -71. 904 75.248 -71.904 4.69 

1.0 0 0 0 0 
0 1.0 0 0 0 

with a ten by ten weight matrix whose diagonal elements are 
0. 04, 0.04, 0.04, 0.04, Oo04, Oo04, 2500, 0.11, Doll, 0.11. 

Then, using (3 . 41), we write the normal equations as 

1\ N-ld X = 
where 

182.257 - 64.750 -182.238 64 . 754 

N 
-64 .750 188.136 64.754 -188 .120 

= 
-182.238 64.754 182 . 249 - 64 . 752 

64 . 754 -188.120 - 64.752 188.122 
and 

d = [-62.661 -13.033 63.052 13.025JT 
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with solution 
~ = [1.47 -0.56 1.51 -0.54] T 

Hence the least squares estimates of the coordinates of stations 5 and 6 are 

[5 = 255086.5 + 1.47 = 255087.97 

N5 = 964173.1 0.56 = 964172.54 

E6 = 253717.3 + 1.51 = 253718.81 

N6 = 965605.9 0.54 = 965605.36 

In practice we would now take ·a new x0 equal to the above estimates and repeat 
the computation until ~ was insignificantly different from a null vector. 

The least squares residuals are computed from (3.43) 

-2.23 
4.47 
1. 76 

1'-
A~- b 1.52 V = = 

-5.75 
-3.96 
o.oo 
0.02 
1.47 

-0.56 

and the unit variance is given, from (4.25), as 

= 0.573 

To check if this is significantli different from unity we compute, following 
5.4.2.2, the F statistic 

FCIQ 6 
' 

= 1.745 . (note that there are 6 degrees of freedom) 

Then using a level of significance of 0.10 we find that, from Table 5.5, the 
critical value of F is 2.10 so we can accept the hypothesis that the unit 
variance is not significantly different from unity (note that Table 5.5 is 

entered with ~ = 0.05 as we are carrying out a two-tailed test). 

To test for blunders we compute the covariance matrix of the residuals, CV 
from (4.68) 

CA = w-l- AN-lAT 
V 

and extract the square roots of the diagonal elements to obtain 
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These are listed below along with the w statistic computed from (5.25) 

observation residual ((/) CJA 
V .!!!. 

distance 1 5 -2.23 m 4.50 m 0.50 
2 - 5 4.47 4.63 0. 96 
3 5 1. 76 4.63 0.38 

2 - 6 1.52 4.63 0.33 

3 - 6 -5 .• 75 4.63 1.24 

4 - 6 -3 . 96 4 . 55 0.87 
5 6 o.oo o.oo 1.54* 

azimuth 5 - 6 0~02 0'.!02 0.97 
eastings 5 1.47 m 2.30 m 0.64 
northings 5 -0.56 1. 70 0.33 

*Note that the computations have been carried out to more digits than have 
been displayed . 

To test for blunders in the observations we first choose a level of 
significance, say 0 . 01 (99% confidence level), and obtain a critical value 

of w from the normal distribution tables (Table 5.2) of 2.57 . Since all 
values of the w statistic are less than 2 . 57 we can accept, with a 0.01 

probability of making a type I error, the nul l hypothesis that none of the 
observations contains a gross error . Alternatively we could compute the tau 

statistics from (5.28). The largest is 

= 
1 

lo54/(0.573)2 = 2 .03 

which is less than the critical value of 2 . 33 given in Table 5.6 for 10 
observations and 6 degrees of freedom . Hence we reach the same conclusion 
and do not reject any observations as blunders at the 0 . 01 level of ? 

signifi cance. 

The precision analysis now proceeds as follows. We first compute the 
covariance matrix of the parameters using (4.67), ioe. by inverting the 
normal equations matri~ 

3.76330 - 1.29788 3.76307 -1.29799 

N-1 - 1.29788 6.14226 - 1.29789 6 . 14222 
c~ = = 3.76307 - 1 . 29789 3.76345 - 1.29779 

-1.29799 6.14222 -1.29779 6.14278 

(A3.2) 
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Absolute error ellipses 

The absolute error ellipse at station 5 is obtained as foll ows. From (4.76) 

tan 2~ = 2 (-1.298)/(6.142-3.763) = -1.091 m 

Wm = 66~3 or 156~3 

Then using (4.74) and (4.75) 

and 

Hence a i s q 
follows 

a2 = cos266.3 6.142 + sin266 . 3 3.763+ 2cos 66.3 sin 66.3 (-1.298) 
p 

a = 1. 787 
p 

a2 = cos2156.3 6.142 + sin2156 . 3 3. 763 - 2 cos 156 . 3 sin 156.3 (-1. 
q 

a2 = 2.591 q 

the major axis 

C1 = 2 . 59 m, max 

(it is 

C1 min 

larger than a ) and the error ellipse is as p 

= 1. 78 m, ~max = 156° 

Similarly the error ellipse for station 6 is 

C1 max = 2.59m, -a . = mln 1. 78 m, tlr = 15~ 'max 

Relative error ellipse between stations 5 and 6 

Using (4.106) we have 

= 6.14278 + 6.14226 - 2(6.14222) 

= 3. 76345 + 3.76330- 2(3.76307) 

= 0 . 00060 

• = 0.00061 

a = (-1.29788) - (-1.29789) - (-1.29799) + (-1.29779) = 0.00021 xy 

Then applying (4.76), (4.74) and (4o75) gives the relative error ellipse as 

a = 0.029, a . = 0.020 , •1• = 4~ max ml-n 'max 
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.298) 

(-1. I 

160 

161 

121 

Standard errors of derived quantities 

For the distance d between stations 5 and 6, for example, the vector~ in 
(4.107) becomes a single element, say ~' where 

1\ 
d = 

and the matrix 8 in (4.109) is the vector b, where 

where 

b = 

= 

A llE = 

[bd 
oE ' 

5 

A 

[llaE 

.M 
hN ' 5 

1\ llN 
a ' 

b~ ea J 
bE ' 6 oN6 

"' AN] AE --d ' - d 

A A A 
Substituting the least squares solution for llE, AN and d we obtain 

b = [o.691 -0.723 -0.691 o.723] 

and using (4.110) with CA as given in (A3.2) we obtain 
X 

2 
~8 = o.ooo4o = (0.020) 2 

Hence the standard error of the least squares estimate of the distance 5 to 6 

(as derived from the least squares estimates of the coordinates of stations 

5 and 6) is 0.020 m. 

Similarly the following standard errors of distances and azimuths have been 
computed after linearising the relationships 

= 
-1 A A A A 

tan [(E . - E.)/(N . - N.)] J ~ J ~ 

and 

The results are tabulated below. 

Stations Standard error Standard error 
from to of distance of azimuth 

1 5 2.16 m 5~4 
2 5 1.84 4.6 
3 5 1.86 3.6 
4 5 2.05 3.3 
1 6 2.18 5.3 

•2 6 1.85 4.6 
3 6 1.85 3.6 
4 6 2.04 3o4 
5 6 
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furthermore the standard error of the derived angle at station 5 between 
stations 6 and 2 is 5~5. 

Reliability 

Consider the first observation, i.e. the distance between stations 1 and 5. 
Then using (5.33) with i = 1 we have 

1"1 = a1 ja"' 
vl 

where al = 5.0 m (the given standard error) 
and a A. = 4. 50 m (already computed and listed earlier with the residuals) 

vl 
then 1"1 = 5.0/4.50 = 1.11 

Now to consider the probability of making a type II error and accepting a 
gross error of four times its standard error (i.e. 20m) we proceed as follows. 
Using (5.32) 

20 = 0~ 5.0 1.11 
l. 

giving 
0~ = 3.60 
l. 

But from (5.20) with a= 5% and a = 1.96 we have 

3.60 = 1.96 + b 
giving 

b = 1.64 

Then from Table 5.2 we see that a value of b of 1.64 corresponds to a 
probability of 0.9495 (approximately 0.95). Hence we are 95% sure of 

" rejecting the first observation if it has a blunder greater than or equal to 
four times its standard error. Conversely there is only a 5% chance that an 
accepted observation has a gross error greater than or equal to four times its 

standard error. 

The effect of an undetected blunder in the first observation on the derived 

azimuth between stations 1 and 5 is investigated as follows. f irst we compute 

y1 from (5.40) 

= 

= 

2 1" - 1 
1 

2 (1.11) - 1 
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) 

giViFig 

yl = 0 .48 

Then, using (5.36) and the already computed standard error of the azimuth 
from 1 to 5, 

" At = 3.6 Do48 5~4 

= 

Hence the maximum effect on the derived azimuth 1 to 5 of a blunder in the 
first observation of four times its standard error is 9~3 . 

Similar computations with all other observations lead to the following table, 
in which the observations are listed in the same order as they were given in 
the problem. Note that P is the probability of rejecting an observation with 

" a blunder greater than or equal to four times its standard error and A~ is 
the maximum effect of such a blunder (if it was undetecte~ on the azimuth 
between stations 1 and 5. 

,, 
Observation 'r factor y factor .E. M 

1 1.11 0.48 0 .95 9~3 

2 1.08 0 . 40 0 . 96 8 . 0 

3 1.08 0.40 0 . 96 8 .0 

4 1.08 0.40 0.96 8.0 

5 1.08 0.40 0.96 8.0 

6 1.10 0.45 0.95 8.8 

7 308.90 308.90 0.03 20.0 

8 148.87 148.87 0.03 21.7 
• 

9 1.31 0.85 Oo86 14.0 

10 1.77 1.47 0 . 62 17.9 

From the above we can draw the obvious conclusion that measurements 7 and 8 

have extremely poor (effectively non-existent) internal reliability and 
rather poor external reliability, i.e. large blunders in these observations 
may go undetected and seriously affect the resulting least squares estimates. 
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A3.3 Special case of condition equations 

8 

A 

Fig. A3.2 

The following observations are made in the above 

angle ex 40° 18 1 1611 (5") 

~ 106 54 21 (5") 
y 32 47 40 (5") 

distance d 625.64 m (0.05m) 

Given the coordinates of A and 8 as 

A 

8 

f 
10417.62 
10645.28 

li 
55061.78 

55333.09 

triangle: 

find the least squares estimates of the coordinates of P and their standard 
errors. 

Note that this problem is,in practice, more easily treated using the special 

case of observation equations and the reader is invited to do t his and check 
that the solution is identical to what follows. Here, in order to show how 
the condition equations method can be applied to two-dimensional position-
fixing problems, it will be considered as an example of t he special case of 
condition equations. 

The vector of observations ~ is given by 
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Since there are 4 observations and 2 parameters (eastings and northings of P) 
we see from the table in 2.4 that there will be (4-2) = 2 condition equati ons; 
putting the known distance AB as a, we can write these: 

a + ~ + y - 1so0 = o 

d/sin ~ - a/sin Y = 0 

From (2.18) we write the matrix C as 

1 1 

-1J. d cotf3 cos ecf' 1J. a cotY cos ecY 

-1 where ~ = 1/206265" and converts the units to agree with W ; C is 

evaluated as 

1 1 

0.0009635 0.0049203 

with a = 354.173 

The vector b is given by (2.16) as 

b = 

which is evaluated as 

l
--17 

b = 
0.007 

Also from (3.7) we have 

-1 w = 

25 

0 

0 

0 

y- 180 ] 

a/sin Y 

0 

25 

0 

0 

0 

0 

25 
0 

0 

0 

0 

0.0025 
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From 3.2.2 we write the normal equations as 

with 

75 Ool471 

= 
0.1471 0.003359 

and 

-b = 17 ] 

-0.007 

which leads to a solution for ~ 

~ = _ I 0.2525j 
L-13 . 14 

Then using (3.44) 

and using 

we obtain 

-6.3 
1\ -6.0 
V = 

(4.50) 

1 = 

.1\ 
a = 
1\ 

~ = 
" y = 
a = 

-4.7 
0.034 

.t + 
1\ 
V 

41f 18 1 

106 54 

32 47 
625 o674m 

09!!7 
15.0 
35.3 

which are the least squares estimates of the observed quantities. 

Now if we let 8 be the bearing of the line AB computed from the known 
coordinates of A and B we have 
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9 = 4rf OD' 1~73 

and the least squares estimates of the eastings and northings of P are 

,, 
y = 

-,. ~ 
E 

p 

" N 
p 

EA + d sin ( 8 + a) 11034 .35 

= = 
NA + d cos (8 + ~) 55167.17 

1\ /\ 
To compute the standard errors of E and N we must first compute C~ using 

p p "" 
(4.71). This involves some lengthy matrix manipulations using the matrices 
C and w-l with the result 

15.881 -8.734 -7.154 0.0416 
-8.734 16.462 -7.735 0.0212 

c1 = -7.154 -7.735 14.882 -0.0629 
0.0416 0.0212 -0.0629 0.000281 

Then in order to apply (4.113) to obtain the standard errors of the 
,... " "I "' coordinates E and N we need 8 from oY bJ,: p p 

" bE ~E of bE 
___..12. ___..12. ---'2. ___12. 
ba e~ by bd 

8 = 
A. e~ t>@ 

A 

~ bN 
___..12. ---'2. ___E. 

ba 0~ ~y od 

Hence 

[~cos ce + S) ~ 0 0 sin (8 d)] 
8 = 

-d sin (8 + ~) ~ 0 0 cos (e + S) 

which can be evaluated as 

[ 0.000511 0 0 0.9857] 
8 = 

0.002990 0 0 0.1684 

Then using (4.113) whilst remembering that 

9 = [(p Np]T 
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we have 

and the 

[

o.-uoo320 

c" = y 
0.000097 

required standard errors 

.l. 
a" = ( 0. 000320 )2 = E p 

a" N = (O.OOOl08)t = 
p 

-0.00009~ 

0.000108J 

are 

0.018 m 

0.010 m 

Notice that error ellipses and all the usual precision and r eliability 
information could be computed if required. 

A3.4 Sequential least sguares 

2 

3 

Fig. A3.3 

The following five height differences have been observed between the four 
stations in Fig. A3.3. Note that the number in brackets after each 
observation is the approximate length of the level route in kilometres. 
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Stations Observed height 
from to difference 

0 1 61.478 m (10) 
1 2 16.994 (15) 
2 3 -25.051 (9) 
3 0 -53.437 (18) 
0 2 78.465 (20) 

Given that the height of station 0 is 2~4.880 metres above datum and that t he 
.l. 

standard error of an observed height difference is 0.005 (d) 2 m, where d is 

the length of the level route in kilometres, compute the least squares 
estimates of the heights of points 1, 2 and 3 and their standard errors. 

Now if, at a later date, the height difference from 1 to 3 is observed to be 
-8.070 m (length 22) determine new sets of least squares estimates and 
standard errors. 

Let l be the true values of the observed height differences and 

x = [x1 x2 x3]T be the true values of the heights of stations 1, 2 and 3. 

Then we can write down the observation equations, F(x) = l as 

--214.880 +Xl = ..el 
- -

..e2 -x +x2 = 1 - - I3 -x2 +X3 = 
-214.880 +X3 = .e4 

--214.880 +X2 = .e5 

Then putting 

xo 
1 276.358 

xo = 0 
x2 = 293.345 

0 268.317 x3 

and applying (2.17) and (2ol6) we obtain (2.22 ) 
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where 
l 0 0 o. ooo 

- 1 1 0 DoDO? 

A = 0 -1 1 b = - 0.023 

0 0 l o.ooo 
0 l 0 o. ooo 

with , from (3. 7 ), 

4000 0 0 0 0 

0 2667 0 0 0 

w = 0 0 4444 0 0 

0 0 0 2222 0 

0 0 0 0 2000 

Then, following 3 . 3 we have the normal equations 

f 6667 
- 2 667 

-4~44] ~:] [ -18 .667 J 
- 26067 9111 = 120 .889 

-4444 6667 - 102.222 

which using (4.67 ) leads to 

[ 0 .0008] ,. 
X = 0. 0089 

-0. 0094 

and 

[ 0. 000181 0.000079 0 .000052 J 
c"' = 0.000079 0. 000197 0 . 000131 

X 
0 . 0000 52 0 . 0001 31 0. 000237 

~ 

The least squares estimates of the heights are then given by 
0 " and their X + X 

standard errors by the square roots of the diagonal elements of c,. , i.e. 
X 

station height standard error 

1 276o359 m 0.013 m 
2 293 . 354 0.014 

3 268.308 0 . 015 

Now to impl ement the sequential l east squares process we proceed as follows. 
First we use the previous resul ts, and fol l owing the notation of 7.2 . 2 we put 
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-1 = Nl = CX 

Then we have the additional (sixth) observation equation as 

giving 

-1 [o.ooo5s] wz = 

Hence we can compute 

-1 T 0.000314 A2N1 A2 = 
-1 -1 T 0.000864 wz + A2Nl A2 = 

( -1 -1 T)-1 
W2 + A2Nl A2 = 1157 

,.. 
-0.01015 A2xl = 

A 0.01885 A2xl - b2 = 

N~lA~ ~ f~:~~~~::j-
L 0.000185 

l0.00281] 
0.00113 
0.00404 

Hence using (7.19) the new value of ~is 

~2 = [~:~~~::] 
0.00939 l0. 00281J 

0.00113 
0.00404 

= 
[

0.00357] 
0.00778 

-0.01343 

To obtain the new covariance matrix we compute 
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= [

0.000129] 
Oo000052 

0.000185 

0.000052 Oo000185] [1157] [-0.000129 

~ 0.000019 -0.000008 -0.00002] 
= -0.000008 0.000003 OoOOOOll 

-0.000027 0.000011 0.000040 

which, following (7.34), is substracted from ~ 
xl 

to produce 

[0.000162 0.000087 0.000080] 
c~ = Oo000087 0.000194 0.000120 

2 0.000080 0.000120 0.000198 

Hence we have the following least squares estimates from the combination of 
all six observations: 

station 

1 

2 

3 

height 

276.361 m 

293.353 

268.303 

standard error 

0.012 m 

0.013 

0.014 

The reader can check in straightforward fashion that the above solution is 

identical to one derived from a simultaneous computation with all six 
observations. 

A3.5 Step by step least squares (Helmert-Wolf method) 

Fig. A3.4 
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A point P is fixed by the following distance measurements from known points 
1, 2, 3 and 4. 

The 

1 

2 

3 

4 

known coordinates 

Station 

1 

2 
3 

4 

p 

p 

p 

p 

are 

8622.45 m with standard error 0.5 m 
3069.72 0.2 
6725.24 0.2 

12138 o96 0.5 

Eastings Northings 

24433.11 m 71200.85 m 
30375.90 70319.63 
30813.54 65515.77 
23146.72 64817.22 

Some time later a new set of measurements are taken from stations 1, 2, 3 only 
with the following results: 

1 

2 

3 

p 

p 

p 

8624al8 m with standard error 0.5 m 
3070.80 Oo2 
6726 o92 0.2 

Assuming each set of measurements is subject to different unknown systematic 
scale errors s1 and s2 respectively, use the Helmert-Wolf step by step method 
to determine the least squares estimates of the coordinates of P without 
explicitly determining s 1 and s 2 • Determine the standard errors of t hese 
estimates. 

(Note that these two different scale errors may arise in practice because of 
different meteorological conditions for the two sets of measurements.) ~ 

First we write down the general functional model for an observed distance 
between stations P and i at the j th epoch 

where 

--=-1-- I (E - E. )
2 + (N - N. )

2 F- D. 
(1-10-65.) p ~ p ~ ~ 

J 

= 

s . is the true value of the scale error at 
J 

0 

t he 

0. is the true value of the distance between i 
~ 

E p' N are the true coordinates of P 
p 

j th epoch 
and P 

E., N. are the known coordinates of the i t h station. 
~ ~ 

-193 -

(in ppm) 



P
au

l A
 C

ro
ss

- U
C

L

The differentials required to form the A matrix can then be approximately 

evaluated as 

where 

bf 
~s. 

J 

bf 
bE 

p 

~ 
bN 

p 

_,..._ 

~ 

10- 6 c. 
l. 

(E0 
- E. )/C. 

l. l. 

(N° - N. )/C . 
l. l. 

Eo and N° th · t 1 f E are e approx1.ma e va ues o 
p 

and N and 
p 

Using the above, and taking approximate values of the coordinates of P as 
33028.77 E and 71865.58 N, we proceed as follows. 

Epoch 1 

Observation equations are written as (2 . 22) with 

A = 

and 

b = 

0.00862 
0.00307 
0 . 00673 
Oo01214 

1 . 13 
-0. 73 

0.11 
0.83 

0.9970 
0.8640 
0.3294 
0.8141 

0.0771 

0.5035 
0.9442 

0.5807 

with x = [s1 :dEP dNp~' which are partitioned according to (7.45). 

have from (3.7) 

w = 

4 

0 

0 

0 

0 

25 

0 

0 

0 

0 

25 
0 

0 

0 

0 

4 

which leads to the normal equations, partitioned according to (7.51), 
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U
0.002255 I 0.1956 0.2282] ----- -·- --·---------
0.1956 : 28.002 20.850 

I 0.2282 1 20.850 29.998 

These are reduced, following (7.52), to 

Epoch 2 

lll.036 
1.056 

1. 056] [d~pl 
6.905 dN P_ 

= 

~] = 

~-llo296l 
L -8.563 J 

Observation equations are written as (2.22) with 

[0.00862 0.9970 0.0771 l 
A = 0.00307 0.8640 0.5035 b 

0.00673 0.3294 0.9442 

l 0.042] 
-7.653 
-4.316 

[2.86] 
= 0.35 

1.79 

with x = [s2 
I 

dNPJ. according to (7. 45). I dE They are partitioned 
I p 

we have, from (3.7), 

0 

25 
0 

which leads to normal equations, partitioned according t o (7.51), of 

[

0.001665 I 0.1561 0.2002] ---------t - - - - --- -----
0.1561 I 25.351 18.959 

I 
0.2002 I 18.959 28.649 

These are reduced, following (7.52), to 

f"io. 718 

L o.192 

Combination of epochs 

l~-2] dE = 
"p 

dN 
p 

l-6.285l 

L-3.767J 

Summing (A3.3) and (A3.4), as in (7.53), yields 

lzl. 753 

Ll.248 
1.248] jcJ[ J = 

11.485 LdN: 
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" " with solution dE = -0.751 and dN = -0.992. Hence the least squares 
p p 

estimates of the coordinates of P are 

= 
= 

33028.77- 0.75 
71864.59. - 0.99 

= 

= 
33028.02 

71864.60 

The covariance matrix of these estimates is obtained from (7.59) by inverting 
the left-hand-side matrix of (A3.5) 

Hence 
a" E = 

p 
a" N = 

p 

1 o.o463 
Go.oo5o 

(0.0463)! 

(0.0876 )t 

-0.0050] 
0.0876 

= 0.22 m 

= 0.30 m 

The scale factors can be obtained by use of (7.56), viz. 

= (1/0.002255)(0.042 - [0.1956 

= 184 ppm 
Similarly 

= 444 ppm 

o.2282] l-o.75ll ) 

L-o.9a2J 

Readers are invited to check that the above results are exactly equivalent to 
a full simultaneous least squares computation by carrying out the latter, i.e. 

by making one single computation with seven observation equations in terms of 
four parameters. 

A3.6 The Kalman filter 

This example follows exactly the navigation problem outlined in 8 o4.1 and 
uses identical notation. Note that the Kalman filter is recursive and takes 
some time to settle down in practiceo Here we enter the process after the 
i-lth recursion and simply illustrate the numerical procedure by carrying out 
one complete set of computations for filtering, smoothing and prediction. 
The numbers have been arbitrarily chosen and are not supposed to represent any 
particular navigation system. Also more digits than are really meaningful 
have been quoted to enable the reader to check his own computations more 

easily. 
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The following information is given (linear and time units are metres and 
seconds respectively throughout) . 

Standard deviation of ship 1 s (assumed) random acceleration (a) = 0.0002 

Fix interval (~t) 

Covariance matrix of each position-fix (W~1 ): 
~ 

Then, using 

-1 = [91.6 w. 
~ 42.7 

42. 7] 
91.6 

(8.71) we obtain 

0.1296 0 

-1 0 0.1296 
WM = 

0.00432 0 

0 0.00432 

0.00432 
0 

0.000144 
0 

= 60 

0 

0.00432 
0 

0.000144 

Also we will take the following as the values of the state vector and its 
covariance matrix resulting from the i-1 th recursion 

15969.933 

"' 25030.638 
X. l = 
~- 2.92214 

2.00528 
and 

29.020576 11.740694 0.092973 0.029312 
-1 

c~ 
11.740694 20.661862 0.029312 0.072305 

N. 1 = = ~- i-1 0.092973 0.029312 0.000655 0.000111 
0.029312 0.072305 0.000111 0.000576 

The results of the position-fix at the i th point (i.e. the observations ~s far 
as the Kalman filter is concerned) are 

E~ 
~ 

N~ 
~ 

= 
= 

16145.292 

25158o442 
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Filtering 

Using (8.51) with M. 1 . 
~- ,~ 

given by (8.66) we predict the state vector as 

1 0 60 0 15969.933 16145.262 
N 0 1 0 60 25030.638 25150.955 X. = = ~ 0 0 1 0 2.92214 2.92214 

0 0 0 1 2.00528 2.00528 

From (8.52) we predict the covariance matrix 

42.66415 15.623718 0.136580 Oo035686 

CN N'. -1 15.623718 31o540946 0.035686 0.111173 = = X. ~ 0.136580 0.035686 0.000799 0.000111 ~ 

0.035686 0.111173 0.000111 0.000720 

We next compute the gain matrix using (8.53) with A. given by (8.65) 
~ 

0.336512 -0.043163 

G = -0.043163 0.367242 
0.001170 -0.000351 

-0.000351 0.001419 

The least squares estimate of the state vector is then computed from (8.54) 

16144.949 eastings 
/\ 25153.703 northings 
X. = 
~ 2.91955 east velocity 

2.01590 north velocity 

with a covariance matrix given by (8.55) 
~ 

28.981496 llo727531 0.092159 0.028476 

C" 
11.727531 20.632154 0.028476 0.071886 = X. 0.092159 0.028476 0.000652 0.000108 ~ 

0.028476 0.071886 0.000108 Oo000575 

which can be seen to be virtually identical to the covarianc e matrix for the 

filtered state vector at point i-1. This is to be expected because once the 
filter has stabilised the precision of the state vector will only change very 

slowly. 
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Prediction 

To predict the state vector at point i+l we use (8.59) to yield 

"I 

X i+l = 

16320.122 
25274.657 

2.91955 
2.01589 

the covariance matrix of which, if required, could be computed from (8.60). 

Smoothing 

Although in practice it would not be usual to do so at this stage it is 
possible to compute the least squares estimate of the state vector at point 
i-1 using all data up to and including point i. 

A 
First we compute k. from (8o58) 

~ 

k. 1 o.o47942J 
~ - [:o.ll088Jj 

then we obtain ~. 1 from (8.57) 
~-

/\ 
X. 1 = 
~-

Exercise 

15970. 097 
25028.513 
2.92453 
1.99515 

The reader is invited to verify that if, at point i+l, we have observations 

of 
0 Ei+l = 16324.026 
0 

Ni+l = 25276.678 

then the filtered, predicted and smoothed results at points i+l, i+2 and i 

respectively would be 
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16321.346 
25275.229 

2.92338 

2.01738 

16496.748 
25396.272 

2.92338 

2.01738 

and 
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